Robust AI: Security and Privacy Issues in Machine Learning : Pre-adoption Scrutiny of Security and Privacy Guarantees of AI Algorithms (Computer Architecture and Design Methodologies)

個数:
  • 予約

Robust AI: Security and Privacy Issues in Machine Learning : Pre-adoption Scrutiny of Security and Privacy Guarantees of AI Algorithms (Computer Architecture and Design Methodologies)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9789819563616

Full Description

This book studies in detail the robustness of machine learning (ML) algorithms involved in dealing with vulnerabilities where the errors or malfunctions are both intentional and malicious, therefore being associated with a specific attack model. Reliability is key to the wider adoption of machine learning algorithms in driving regular tasks. There needs to be guaranteed on the success of ML-driven decision-making systems, without errors. It is often seen that an otherwise typically high-performance neural network trained for a specific task, fails under certain circumstances. These vulnerabilities are a key deterrent to reliability and must be addressed before the ubiquitous adoption of AI.

From the machine learning standpoint, this book looks at both critical ingredients, that is the model (neural architecture and its properties) and the training data and from the perspective of Robust AI, the investigation pertains to both Security and Privacy issues. To elaborate on the nomenclature, the Security aspects involve attacks that concern the disruption of the intended machine learning task itself. The Privacy aspect deals with attacks that pertain to leaking sensitive information or IP. A combination of both is necessary to have robust algorithms that can withstand malicious adversaries. The ideas are well described with respect to the available literature and the propositions are studied extensively with many different use cases, on multiple neural architectures and datasets. The content of this book caters to researchers, programmers, engineering, and policymakers who are interested in the implementation of Robust AI and its security and privacy issues in machine learning.

Contents

Introduction.- Background.- Adversarial Examples and Dimensionality.- Spatially Correlated Patterns in Adversarial Images.- Patch-based real-world adversarial attacks.- Comparative Analysis of State-of-the-Art Adversarial Attacks.- Efficient Decision-based Adversarial Attacks.- Pre-Processing based Defenses.- Protecting IP of trained models.- Protecting Privacy of Training Data.- Future Scope of Work.- Conclusion.

最近チェックした商品