Database Systems for Advanced Applications : 30th International Conference, DASFAA 2025, Singapore, Singapore, May 26-29, 2025, Proceedings, Part V (Lecture Notes in Computer Science)

個数:

Database Systems for Advanced Applications : 30th International Conference, DASFAA 2025, Singapore, Singapore, May 26-29, 2025, Proceedings, Part V (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 613 p.
  • 言語 ENG
  • 商品コード 9789819541546

Full Description

This six-volume set LNCS 15986-15991 constitutes the proceedings of the 30th International Conference on Database Systems for Advanced Applications, DASFAA 2025, held in Singapore, during May 26-29, 2025.
The 136 full papers presented in this book together with 89 short papers were carefully reviewed and selected from 731 submissions. They cover topics such as

Part I- Machine Learning and Text.
Part II- Emerging Application; NLP and Spatial-Temporal.
Part V- Recommendation and Security & Privacy.
Part VI- Language Model; Industry Papers and Demo Papers.

Contents

.- Recommendation.
.- Hypergraph Enhanced Knowledge Tree Prompt Learning for Next-Basket Recommendation.
.- MHGCP:Multi-View Heterogeneous Graph with Cross-View Projection for Recommendation.
.- Towards Scenario-adaptive User Behavior Modeling for Multi-scenario Recommendation.
.- Leave No One Behind: Enhancing Diversity While Maintaining Accuracy in Social Recommendation.
.- Counterfactual Path Augmentation for Reinforcement Reasoning in Explainable Recommendation.
.- Adaptive Personalized Federated Recommendation with Global Knowledge Distillation.
.- FHCF: Fully-Hyperbolic Symmetric Graph Learning for Collaborative Filtering.
.- UGDA: A Unified Graph-based Method with Domain-specific Adaptation for Multi-domain Recommendation.
.- Self-supervised Hierarchical Representation for Medication Recommendation.
.- Self-Supervised Dual Graph and Intention Association for Session-based Recommendation.
.- Exercise Recommendation Based on Feature-Aligned Knowledge Tracing.
.- Joint User and Item Prototype Alignment for Cross-Platform Recommendation.
.- Diffusion Multi-Behavior Recommender Model .
.- HHGCN-DrugRec: Hierarchical HyperGraph Convolution Network for Drug Combination Recommendation.
.- Emotion-based Conversational Recommendation by Inferring Implicit Users' Preferences from their Subjective Claims.
.- CDIVR: Cognitive Dissonance-aware Interactive Video Recommendation.
.- Modeling Personalized Short-term and Periodic Long-term Preferences for Enhanced Next POI Recommendations.
.- DRE: Generating Recommendation Explanations by Aligning Large Language Models at Data-level.
.- Towards Unified Modeling for Positive and Negative Preferences in Sign-aware Recommendation.
.- Alignment-Uniformity Aware Feature Representation Learning for CTR Prediction.
.- Diffusion Based Data Augmentation for Multi-behavior Sequential Recommendation.
.- Semantic Gaussian Mixture Variational Autoencoder for Sequential Recommendation*.
.- Personalized Education with Ranking Alignment Recommendation.
.- HierLLM: Hierarchical Large Language Model for Question Recommendation.
.- Comprehensive Interest Modeling and Relational Mining for Multi-modal Recommendation.
.- Demand-oriented Route Recommendation for Shared Mobility Services.
.- CoCoB: Adaptive Collaborative Combinatorial Bandits for Online Recommendation.
.- KG-TS: Knowledge Graph-driven Thompson Sampling for Online Recommendation.
.- Efficient Noise-reducing Neural Network for Cross-Domain Sequential Recommendation.
.- Bridging RDF Knowledge Graphs with Graph Neural Networks for Semantically-Rich Recommender Systems. 
.- Security & Privacy.
.- Lattice-based Forward Secure Certificateless Encryption Scheme for Cloud Data Management.
.- Logarithmic-size Lattice-based Linkable Ring Signature for Cloud Data Management.
.- CyberLLM: Enable Mapping CVE to Tactics and Techniques of Cyber Threats via LLM.
.- Privacy-preserving Multi-Dimensional Range Query Optimization Across Multiple Sources.
.- Decoupled Self-Knowledge Distillation Makes Differentially Private Deep Learning Stronger.
.- PriExRec: Defending Against Membership Inference Attacks in Federated Recommendation with Explicit Feedback. 
.- OPOM: The Ordinal and Parallel Optimization Method of Spark multi-query applications.
.- Enabling Efficient and Authenticated Trajectory Similarity Retrieval on Blockchain-assisted Cloud. 
.- InC: A Vertical Federated Learning Framework with Multiple Noisy Labels.
.- Breaking Free from Label Limitations: A Novel Unsupervised Attack Method for Graph Classification.
.- TSALockMark: An Asymmetric and Robust Watermarking Scheme for Relational Databases with Distortion Constraints.
.- Towards Confidential and Efficient LLM Inference with Dual Privacy Protection.
.- ECPIR: Efficient and Controllable Privacy-Preserving Image Retrieval in Cloud-Assisted System.
.- Privacy-preserving Image Generation Based on Self-Attention.

最近チェックした商品