A Mathematical Introduction to Data Science with Python

個数:
  • 予約

A Mathematical Introduction to Data Science with Python

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 390 p.
  • 言語 ENG
  • 商品コード 9789819536672

Full Description

This textbook serves as a companion to "A Mathematical Introduction to Data Science". It uses Python programming to provide a comprehensive foundation in the mathematics needed for data science. It is designed for anyone with a basic mathematical background, including students and self-learners interested in understanding the principles behind the computational algorithms used in data science. The focus of this book is to demonstrate how programming can aid in this understanding and be used in solving mathematical problems. It is written using Python as its programming language, but readers do not need prior knowledge of Python to benefit from it.

Some examples from "A Mathematical Introduction to Data Science" are used to illustrate key concepts such as sets, functions, linear algebra, calculus, and probability and statistics, through Python programming, though it is not necessary to have seen the examples before. Further, this textbook shows how those mathematical concepts can be applied in widely used computational algorithms, such as Principal Component Analysis, Singular Value Decomposition, Linear Regression in two and more dimensions, Simple Neural Networks, Maximum Likelihood Estimation, Logistic Regression and Ridge Regression.

This textbook is designed with the assumption that readers have no prior knowledge of Python but possess a basic understanding of programming concepts, such as control flow. Ideally, readers should have both this book and its companion, "A Mathematical Introduction to Data Science". However, those with a strong mathematical background and an interest in programming implementations can benefit from reading this textbook alone.

Contents

Chapter 1 Introduction.- Chapter 2 Sets and Functions.- Chapter 3 Liner Algebra.- Chapter 4 Matrix Decomposition.- Chapter 5 Calculus.- Chapter 6 Advanced Calculus.- Chapter 7 Algorithms 1 - Principal Component Analysis.- Chapter 8 Algorithms 2 - Liner Regression.- Chapter 9 Algorithms 3 - Neural Networks.- Chapter 10 Probability.- Chapter 11 Further Probability.- Chapter 12 Elements of Statistics.- Chapter 13 Algorithms 4 - Maximum Likelihood Estimation and Its Application to Regression.- Chapter 14 Data Modelling in Practice.

最近チェックした商品