Data Science MBA : Big Data, Digitalization, and Strategy; with applications in R (Springer Texts in Business and Economics)

個数:
  • 予約

Data Science MBA : Big Data, Digitalization, and Strategy; with applications in R (Springer Texts in Business and Economics)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9789819524327

Full Description

This text book focuses on what could be the most important challenge for firms to boost long-term productivity and competitiveness: digital strategy. It seeks to provide readers with a solid knowledge of the most relevant issues and concepts, that will be relevant to MBA students in real-world settings. The book discusses theoretical concepts relating to digital strategy, while also using hands-on data analysis in R software to illustrate some fundamental features and pitfalls of working with real-world data. The book starts by clarifying the meaning of relevant concepts (digitization vs digitalization; Machine learning, Artificial Intelligence), presents three leading models of digital transformation, and explains how digitalization has far-reaching implications for how organizations need to be structured. Then the book discusses the skills of a data scientist, and how digital transformation leads to new concerns surrounding ethics. Other themes include data quality, data pre-processing, data visualization, as well as the distinction between prediction and causal inference. Many of these themes are illustrated using R examples, that familiarize the reader with data analysis, using these hands-on experiences to uniquely illustrate some important themes surrounding statistical analysis, and to let readers see for themselves how some popular statistical and data science techniques actually work.

Contents

Contents.- Preface.- Chapter 1 Introduction and definitions.- Chapter 2 Digital Transformation of Organizations.- Chapter 3 Big Data technologies and Architecture.- Chapter 4 the Data Science process.- Chapter 5 Ethics of Data Science and AI.- Chapter 6 Working with Data.- Chapter 7 The User Experience UEX.- Chapter 8 Data Visualization.- Chapter 9 Descriptions statistical associations.- Chapter 10 Prediction.- Chapter 11 Text as data.- Chapter 12 Causal inference.- Chapter 13 Conclusion.- References.

最近チェックした商品