Advances in Speech and Music Technology : Proceedings of FRSM 2020 (Advances in Intelligent Systems and Computing)

個数:

Advances in Speech and Music Technology : Proceedings of FRSM 2020 (Advances in Intelligent Systems and Computing)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 462 p.
  • 言語 ENG
  • 商品コード 9789813368804

Full Description

This book features original papers from 25th International Symposium on Frontiers of Research in Speech and Music (FRSM 2020), jointly organized by National Institute of Technology, Silchar, India, during 8-9 October 2020. The book is organized in five sections, considering both technological advancement and interdisciplinary nature of speech and music processing. The first section contains chapters covering the foundations of both vocal and instrumental music processing. The second section includes chapters related to computational techniques involved in the speech and music domain. A lot of research is being performed within the music information retrieval domain which is potentially interesting for most users of computers and the Internet. Therefore, the third section is dedicated to the chapters related to music information retrieval. The fourth section contains chapters on the brain signal analysis and human cognition or perception of speech and music. The final section consists of chapters on spoken language processing and applications of speech processing. 

Contents

Musical Signal Processing - A Literature Survey.- Noise Removal from Audio Using CNN and Denoiser.- Sine-Wave Speech as Pre-processing for Downstream Tasks.- Style of Vocal Singers in Indian Classical Music: Timbre Approach.- Style Identification of Vocal Singers in Indian Classical Music Using Meend and Andolan.- Vocalist Identification in Audio Songs Using Convolutional Neural Network.- Swaragram: Shruti-based Chromagram for Indian Classical Music.- An Artificial Intelligence-based Approach Towards Segregation of Folk Songs.- Shruti Detection Using Machine Learning and Sargam Identification for Instrumental Audio.- Addressing the Recitative Problem in Real-time Opera Tracking.- Perception of Similarity and Dissimilarity in Hindustani Classical Music.- Analytical Comparison of Classification Models for Raga Identification in Carnatic Classical Audio.- Multimodal Sentiment Analysis of Rabindra- Sangeet through Machine Learning Techniques.

最近チェックした商品