実解析(第2版)<br>Real Analysis: Theory of Measure and Integration (2nd Edition) (2ND)

個数:

実解析(第2版)
Real Analysis: Theory of Measure and Integration (2nd Edition) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 760 p.
  • 言語 ENG
  • 商品コード 9789812566546
  • DDC分類 515

基本説明

In the setting of a general measure space, every concepts is defined precisely and every theorem is presented with a clear and complete proof with all the relevant details.

Full Description

This book presents a unified treatise of the theory of measure and integration. In the setting of a general measure space, every concept is defined precisely and every theorem is presented with a clear and complete proof with all the relevant details. Counter-examples are provided to show that certain conditions in the hypothesis of a theorem cannot be simply dropped.The dependence of a theorem on earlier theorems is explicitly indicated in the proof, not only to facilitate reading but also to delineate the structure of the theory. The precision and clarity of presentation make the book an ideal textbook for a graduate course in real analysis while the wealth of topics treated also make the book a valuable reference work for mathematicians.

Contents

Measure and Outer Measure; Regularity of Measures; Measurable Mappings; Completion of a Measure Space; Convergence Almost Everywhere; Almost Uniform Convergence; Convergence in Measure; Integration with Respect to a Measure; Generalized Convergence Theorems for Integrals; Signed Measures; Absolute Continuity of a Measure with Respect to Another; Monotone Functions and Functions of Bounded Variation on R; Absolutely Continuous Functions; Convex Functions, Differentiation of an Indefinite Integral; Banach Spaces; Lp Spaces for p in (0, ); Bounded Linear Functionals; Integration on a Locally Compact Hausdorff Space; Extension of Additive Set Functions to Measures; Lebesgue-Stieltjes Measure Space; Product Measure Spaces; Convolution of Functions; Integration with Respect to Lebesgue Measure on Euclidean Spaces; Integral and Linear Transformations of the Integral; Hardy-Littlewood Maximal Theorem; Lebesgue Differentiation Theorem; Change of Variable of Integration by Differentiable Transformations; Hausdorff Measures on Euclidean Spaces; Hausdorff Dimensions; Transformation of Hausdorff Measures.

最近チェックした商品