Graph Neural Networks: Foundations, Frontiers, and Applications

個数:

Graph Neural Networks: Foundations, Frontiers, and Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 689 p.
  • 言語 ENG
  • 商品コード 9789811660566
  • DDC分類 006.31

Full Description

Deep Learning models are at the core of artificial intelligence research today. It is well known that deep learning techniques are disruptive for Euclidean data, such as images or sequence data, and not immediately applicable to graph-structured data such as text. This gap has driven a wave of research for deep learning on graphs, including graph representation learning, graph generation, and graph classification. The new neural network architectures on graph-structured data (graph neural networks, GNNs in short) have performed remarkably on these tasks, demonstrated by applications in social networks, bioinformatics, and medical informatics.  Despite these successes, GNNs still face many challenges ranging from the foundational methodologies to the theoretical understandings of the power of the graph representation learning.

This book provides a comprehensive introduction of GNNs. It first discusses the goals of graph representation learning and then reviews the history,current developments, and future directions of GNNs. The second part presents and reviews fundamental methods and theories concerning GNNs while the third part describes various frontiers that are built on the GNNs. The book concludes with an overview of recent developments in a number of applications using GNNs.



This book is suitable for a wide audience including undergraduate and graduate students, postdoctoral researchers, professors and lecturers, as well as industrial and government practitioners who are new to this area or who already have some basic background but want to learn more about advanced and promising techniques and applications.

Contents

Chapter 1. Representation Learning.- Chapter 2. Graph Representation Learning.- Chapter 3. Graph Neural Networks.- Chapter 4. Graph Neural Networks for Node Classification.- Chapter 5. The Expressive Power of Graph Neural Networks.- Chapter 6. Graph Neural Networks: Scalability.- Chapter 7. Interpretability in Graph Neural Networks.- Chapter 8. "Graph Neural Networks: Adversarial Robustness".- Chapter 9. Graph Neural Networks: Graph Classification.- Chapter 10. Graph Neural Networks: Link Prediction.- Chapter 11. Graph Neural Networks: Graph Generation.- Chapter 12. Graph Neural Networks: Graph Transformation.- Chapter 13. Graph Neural Networks: Graph Matching.- Chapter 14. "Graph Neural Networks: Graph Structure Learning". Chapter 15. Dynamic Graph Neural Networks.- Chapter 16. Heterogeneous Graph Neural Networks.- Chapter 17. Graph Neural Network: AutoML.- Chapter 18. Graph Neural Networks: Self-supervised Learning.- Chapter 19. Graph Neural Network in Modern Recommender Systems.- Chapter 20. Graph Neural Network in Computer Vision.- Chapter 21. Graph Neural Networks in Natural Language Processing.- Chapter 22. Graph Neural Networks in Program Analysis.- Chapter 23. Graph Neural Networks in Software Mining.- Chapter 24. "GNN-based Biomedical Knowledge Graph Mining in Drug Development".- Chapter 25. "Graph Neural Networks in Predicting Protein Function and Interactions".- Chapter 26. Graph Neural Networks in Anomaly Detection.- Chapter 27. Graph Neural Networks in Urban Intelligence. 

最近チェックした商品