深層強化学習<br>Deep Reinforcement Learning : Fundamentals, Research and Applications

個数:
電子版価格
¥32,348
  • 電子版あり

深層強化学習
Deep Reinforcement Learning : Fundamentals, Research and Applications

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 514 p.
  • 商品コード 9789811540943

Full Description

Deep reinforcement learning (DRL) is the combination of reinforcement learning (RL) and deep learning. It has been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine, and famously contributed to the success of AlphaGo. Furthermore, it opens up numerous new applications in domains such as healthcare, robotics, smart grids and finance. Divided into three main parts, this book provides a comprehensive and self-contained introduction to DRL. The first part introduces the foundations of deep learning, reinforcement learning (RL) and widely used deep RL methods and discusses their implementation. The second part covers selected DRL research topics, which are useful for those wanting to specialize in DRL research. To help readers gain a deep understanding of DRL and quickly apply the techniques in practice, the third part presents mass applications, such as the intelligent transportation system and learning to run, with detailedexplanations. 

The book is intended for computer science students, both undergraduate and postgraduate, who would like to learn DRL from scratch, practice its implementation, and explore the research topics. It also appeals to engineers and practitioners who do not have strong machine learning background, but want to quickly understand how DRL works and use the techniques in their applications.

Contents

Preface.- Contributors.- Acknowledgements.- Mathematical Notation.- Acronyms.- Introduction.- Part 1: Foundamentals.- Chapter 1: Introduction to Deep Learning.- Chapter 2: Introduction to Reinforcement Learning.- Chapter 3: Taxonomy of Reinforcement Learning Algorithms.- Chapter 4: Deep Q-Networks.- Chapter 5: Policy Gradient.- Chapter 6: Combine Deep Q-Networks with Actor-Critic.- Part II: Research.- Chapter 7: Challenges of Reinforcement Learning.- Chapter 8: Imitation Learning.- Chapter 9: Integrating Learning and Planning.- Chapter 10: Hierarchical Reinforcement Learning.- Chapter 11: Multi-Agent Reinforcement Learning.- Chapter 12: Parallel Computing.- Part III: Applications.- Chapter 13: Learning to Run.- Chapter 14: Robust Image Enhancement.- Chapter 15: AlphaZero.- Chapter 16: Robot Learning in Simulation.- Chapter 17: Arena Platform for Multi-Agent Reinforcement Learning.- Chapter 18: Tricks of Implementation.- Part IV: Summary.- Chapter 19: Algorithm Table.- Chapter 20: Algorithm Cheatsheet.

最近チェックした商品