Rによるクラスター分析入門<br>An Introduction to Clustering with R (Behaviormetrics: Quantitative Approaches to Human Behavior)

個数:

Rによるクラスター分析入門
An Introduction to Clustering with R (Behaviormetrics: Quantitative Approaches to Human Behavior)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 340 p.
  • 言語 ENG
  • 商品コード 9789811305528
  • DDC分類 519

Full Description

The purpose of this book is to thoroughly prepare the reader for applied research in clustering. Cluster analysis comprises a class of statistical techniques for classifying multivariate data into groups or clusters based on their similar features. Clustering is nowadays widely used in several domains of research, such as social sciences, psychology, and marketing, highlighting its multidisciplinary nature. This book provides an accessible and comprehensive introduction to clustering and offers practical guidelines for applying clustering tools by carefully chosen real-life datasets and extensive data analyses. The procedures addressed in this book include traditional hard clustering methods and up-to-date developments in soft clustering. Attention is paid to practical examples and applications through the open source statistical software R. Commented R code and output for conducting, step by step, complete cluster analyses are available. The book is intended for researchers interested in applying clustering methods. Basic notions on theoretical issues and on R are provided so that professionals as well as novices with little or no background in the subject will benefit from the book.

Contents

Section: Introduction.- 1.1 Introduction to clustering.- 1.2 R software.- 2. Section: Standard algorithms.- 2.1 Introduction.- 2.2 Distances and dissimilarities.- 2.3 Hierarchical methods.- 2.4 Non-hierarchical methods.- 2.5 Cluster validity.- 3. Section: Fuzzy algorithms.- 3.1 Introduction.- 3.2 Fuzzy K-means.- 3.3 Fuzzy K-medoids.- 3.4 Other fuzzy variants.- 3.5 Cluster validity.- 4. Section: Model-based algorithms.- 4.1 Introduction.- 4.2 Mixture of Gaussian distributions.- 4.3 Mixture of non-Gaussian distributions.- 4.4 Parsimonious mixture models.

最近チェックした商品