Mathematical Theory of Elasticity of Quasicrystals and Its Applications (Springer Series in Materials Science) (2ND)

個数:

Mathematical Theory of Elasticity of Quasicrystals and Its Applications (Springer Series in Materials Science) (2ND)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 452 p.
  • 言語 ENG
  • 商品コード 9789811094958
  • DDC分類 530.41

Full Description

This interdisciplinary work on condensed matter physics, the continuum mechanics of novel materials, and partial differential equations, discusses the mathematical theory of elasticity and hydrodynamics of quasicrystals, as well as its applications. By establishing new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions, the theories developed here dramatically simplify the solution of complex elasticity problems. Comprehensive and detailed mathematical derivations guide readers through the work. By combining theoretical analysis and experimental data, mathematical studies and practical applications, readers will gain a systematic, comprehensive and in-depth understanding of condensed matter physics, new continuum mechanics and applied mathematics. 

This new edition covers the latest developments in quasicrystal studies. In particular, it pays special attention to the hydrodynamics, soft-matter quasicrystals, and the Poisson bracket method and its application in deriving hydrodynamic equations. These new sections make the book an even more useful and comprehensive reference guide for researchers working in Condensed Matter Physics, Chemistry and Materials Science.

Contents

Crystals.- Framework of crystal elasticity.- Quasicrystals and their properties.- The physical basis of elasticity of solid quasicrystals.- Elasticity theory of one-dimensional quasicrystals and simplification.-Elasticity theory of two-dimensional quasicrystals and simplification.- Application I—Some dislocation and interface problems and solutions of one- and two-dimensional quasicrystals.- Application II—Solutions of notch and crack problems of one- and two-dimensional quasicrystals.- Elasticity of three-dimensional quasicrystals and its applications.- Phonon-phason dynamics and defects dynamics of solid quasicrystals.- Complex analysis method.- Variational principles of elasticity of quasicrystals, numerical analysis and applications.- Some mathematical principles on solutions of elasticity of quasicrystals.- Nonlinear behaviour of solid quasicrystals.- Fracture theory of solid quasicrystals.- Hydrodynamics of quasicrystals.- Conclusion remarkable.

最近チェックした商品