G.W. Leibniz, Interrelations between Mathematics and Philosophy (Archimedes)

個数:

G.W. Leibniz, Interrelations between Mathematics and Philosophy (Archimedes)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 210 p.
  • 言語 ENG
  • 商品コード 9789401778695
  • DDC分類 501

Full Description

Up to now there have been scarcely any publications on Leibniz dedicated to investigating the interrelations between philosophy and mathematics in his thought. In part this is due to the previously restricted textual basis of editions such as those produced by Gerhardt. Through recent volumes of the scientific letters and mathematical papers series of the Academy Edition scholars have obtained a much richer textual basis on which to conduct their studies - material which allows readers to see interconnections between his philosophical and mathematical ideas which have not previously been manifested. The present book draws extensively from this recently published material. The contributors are among the best in their fields. Their commissioned papers cover thematically salient aspects of the various ways in which philosophy and mathematics informed each other in Leibniz's thought.

Contents

PART I: MATHEMATICS AND PHILOSOPHY.- Paper 1: The Interrelations between Mathematics and Philosophy in Leibniz's Thought; Norma B. Goethe, Philip Beeley and David Rabouin.- Paper 2: Leibniz, Philosopher Mathematician and Mathematical Philosopher; Philip Beeley.- Paper 3: The Difficulty of Being Simple: On Some Interactions between Mathematics and Philosophy in Leibniz's Analysis of Notions; David Rabouin.- PART II: MATHEMATICAL REFLECTIONS.- Paper 4: Leibniz's Mathematical and Philosophical Analysis of Time; Emily R. Grosholz.- Paper5: Analyticité, Équipollence et Théorie des Courbes chez Leibniz; Eberhard Knobloch.- Paper 6: Leibniz as Reader and Second Inventor: The Cases of Barrow and Mengoli; Siegmund Probst.- PART III: THE PROBLEM OF INFINITY.- Paper 7: Leibniz's Actual Infinite in Relation to his Analysis of Matter; Richard Arthur.- Paper 8: Comparability of Infinities and Infinite Multitude in Galileo and Leibniz; Samuel Levey.- Paper 9: Leibniz on the Elimination of Infinitesimals; Douglas Jesseph.

最近チェックした商品