Lattice-Ordered Groups : An Introduction (Reidel Texts in the Mathematical Sciences)

個数:

Lattice-Ordered Groups : An Introduction (Reidel Texts in the Mathematical Sciences)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 204 p.
  • 言語 ENG
  • 商品コード 9789401077927
  • DDC分類 004

Full Description

The study of groups equipped with a compatible lattice order ("lattice-ordered groups" or "I!-groups") has arisen in a number of different contexts. Examples of this include the study of ideals and divisibility, dating back to the work of Dedekind and continued by Krull; the pioneering work of Hahn on totally ordered abelian groups; and the work of Kantorovich and other analysts on partially ordered function spaces. After the Second World War, the theory of lattice-ordered groups became a subject of study in its own right, following the publication of fundamental papers by Birkhoff, Nakano and Lorenzen. The theory blossomed under the leadership of Paul Conrad, whose important papers in the 1960s provided the tools for describing the structure for many classes of I!-groups in terms of their convex I!-subgroups. A particularly significant success of this approach was the generalization of Hahn's embedding theorem to the case of abelian lattice-ordered groups, work done with his students John Harvey and Charles Holland. The results of this period are summarized in Conrad's "blue notes" [C].

Contents

1: Fundamentals.- Section 1: Preliminaries and Basic Examples.- Section 2: Subobjects and Morphisms.- 2: Bernau's representation for Archimedean ?-groups.- 3: The Conrad-Harvey-Holland Representation.- 4: Represent able and Normal-valued ?-groups.- Section 1: The Lorenzen Representation for ?-groups.- Section 2: Normal-valued ?-groups.- 5: Holland's Embedding Theorem.- 6: Free ?-groups.- 7: Varieties of ?-groups.- Section 1: The lattice of Varieties.- Section 2: Covers of the Abelian Variety.- Section 3: The Cardinality of the lattice of ?-group Varieties.- 8: Completions of Representable and Archimedean ?-groups.- Section 1: Completions of Representable ?-groups.- Section 2: Completions of Archimedean ?-groups.- 9: The Lateral Completion.- 10: Finite-valued and Special-valued ?-groups.- 11: Groups of Divisibility.- Appendix: A Menagerie of Examples.- Section 1: Varieties of ?-groups.- Section 2: Torsion and Radical Classes of ?-groups.- Section 3: Examples of Lattice-ordered Groups.- Author Index.

最近チェックした商品