Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty (Theory and Decision Library D:)

個数:

Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty (Theory and Decision Library D:)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 427 p.
  • 言語 ENG
  • 商品コード 9789401074490
  • DDC分類 658

Full Description

Operations Research is a field whose major contribution has been to propose a rigorous fonnulation of often ill-defmed problems pertaining to the organization or the design of large scale systems, such as resource allocation problems, scheduling and the like. While this effort did help a lot in understanding the nature of these problems, the mathematical models have proved only partially satisfactory due to the difficulty in gathering precise data, and in formulating objective functions that reflect the multi-faceted notion of optimal solution according to human experts. In this respect linear programming is a typical example of impressive achievement of Operations Research, that in its detenninistic fonn is not always adapted to real world decision-making : everything must be expressed in tenns of linear constraints ; yet the coefficients that appear in these constraints may not be so well-defined, either because their value depends upon other parameters (not accounted for in the model) or because they cannot be precisely assessed, and only qualitative estimates of these coefficients are available. Similarly the best solution to a linear programming problem may be more a matter of compromise between various criteria rather than just minimizing or maximizing a linear objective function. Lastly the constraints, expressed by equalities or inequalities between linear expressions, are often softer in reality that what their mathematical expression might let us believe, and infeasibility as detected by the linear programming techniques can often been coped with by making trade-offs with the real world.

Contents

I. The General Framework.- 1. Multiobjective programming under uncertainty : scope and goals of the book.- 2. Multiobjective programming : basic concepts and approaches.- 3. Stochastic programming : numerical solution techniques by semi-stochastic approximation methods.- 4. Fuzzy programming : a survey of recent developments.- II. The Stochastic Approach.- 1. Overview of different approaches for solving stochastic programming problems with multiple objective functions.- 2. "STRANGE" : an interactive method for multiobjective stochastic linear programming, and "STRANGE-MOMIX" : its extension to integer variables.- 3. Application of STRANGE to energy studies.- 4. Multiobjective stochastic linear programming with incomplete information : a general methodology.- 5. Computation of efficient solutions of stochastic optimization problems with applications to regression and scenario analysis.- III. The Fuzzy Approach.- 1. Interactive decision-making for multiobjective programming problems with fuzzy parameters.- 2. A possibilistic approach for multiobjective programming problems. Efficiency of solutions.- 3. "FLIP" : an interactive method for multiobjective linear programming with fuzzy coefficients.- 4. Application of "FLIP" method to farm structure optimization under uncertainty.- 5. "FULPAL" : an interactive method for solving (multiobjective) fuzzy linear programming problems.- 6. Multiple objective linear programming problems in the presence of fuzzy coefficients.- 7. Inequality constraints between fuzzy numbers and their use in mathematical programming.- 8. Using fuzzy logic with linguistic quantifiers in multiobjective decision making and optimization: A step towards more human-consistent models.- IV. Stochastic Versus Fuzzy Approaches and RelatedIssues.- 1. Stochastic versus possibilistic multiobjective programming.- 2. A comparison study of "STRANGE" and "FLIP".- 3. Multiobjective mathematical programming with inexact data.

最近チェックした商品