Theory of categories

個数:

Theory of categories

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 338 p.
  • 言語 ENG
  • 商品コード 9789400995529
  • DDC分類 512

Full Description

Although it is a relatively .l'oung branch of mathematics, category theorJ; has already achieved important results that are dispersed in a great number of papers and gathered in some monographs. For this reason, to write a new monograph on the theory of categories is easy, due to the abundance of material, but also difficult, due to the great quantity of ideas and results. In this work we try to give all exposition of some of the ideas and results of the theory of categories. We use current terminology and build as simple a framework as possible, but nevertheless sufficient to enable the reader of this book to understand most of the research papers deroted to this theory. In order to read this book e{fectil'ely, the reader is assumed to possess some knowledge of set theory, as well as some elementary facts from algebra and general topology. However, the reader should hare mathematical maturity. The first chapter deals with the general stud}' of categories. Here the basic notions are introduced and most of the fundamental results are proved. The second chapter discusses the problem of the completion of categories. Brief!:!-' said, this means the embedding of a gil'en category into a category that possesses some additional properties, e.lpeciallr those connected with the existence of limits and colimits. The third chapter covers the algebraic categories, i.e. categories of universal algebras and their general study. as well as the study of the functors between them.

Contents

1 Categories and Functors.- 1.1. The notion of a category. Examples. Duality.- 1.2. Special morphisms in a category.- 1.3. Functors.- 1.4. Equivalence of categories.- 1.5. Equivalence relations on a category.- 1.6. Limits and colimits.- 1.7. Products and coproducts.- 1.8. Some special limits and colimits.- 1.9. Existence of limits and colimits.- 1.10. Limits and colimits in the category of functors.- 1.11. Adjoint functors.- 1.12. Commutation of functors with limits and colimits.- 1.13. Categories of fractions.- 1.14. Calculus of fractions.- 1.15. Existence of a coadjoint to the canonical functor P: ? ? ? (?-1).- 1.16. Subobjects and quotient objects.- 1.17. Intersections and unions of subobjects.- 1.18. Images and inverse images.- 1.19. Triangular decomposition of morphisms.- 1.20. Relative triangular decomposition of morphisms.- 2 Completion of Categories.- 2.1. Proper functors.- 2.2. The extension theorem.- 2.3. Dense functors.- 2.4. ?-sheaves.- 2.5. Topologies and sheaves.- 2.6. Some adjoint theorems.- 2.7. A generalization of the extension theorem.- 2.8. Completion of categories.- 2.9. Grothendieck topologies.- 3 Algebraic Categories.- 3.1. Algebraic theories.- 3.2. Algebraic categories.- 3.3. Algebraic functors.- 3.4. Coalgebras.- 3.5. Characterization of algebraic categories.- 4 Abelian Categories.- 4.1. Preadditive and additive categories.- 4.2. Abelian categories.- 4.3. The isomorphism theorems.- 4.4. Limits and colimits in abelian categories.- 4.5. The extension theorem in the additive case. A characterization of functor categories.- 4.6. Injective objects in abelian categories.- 4.7. Categories of additive fractions.- 4.8. Left exact functors. The embedding theorem.- References.

最近チェックした商品