Lagrange and Finsler Geometry : Applications to Physics and Biology (Fundamental Theories of Physics)

個数:

Lagrange and Finsler Geometry : Applications to Physics and Biology (Fundamental Theories of Physics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 300 p.
  • 言語 ENG
  • 商品コード 9789048146567
  • DDC分類 516

Full Description

Since 1992 Finsler geometry, Lagrange geometry and their applications to physics and biology, have been intensive1y studied in the context of a 5-year program called "Memorandum ofUnderstanding", between the University of Alberta and "AL.1. CUZA" University in lasi, Romania. The conference, whose proceedings appear in this collection, belongs to that program and aims to provide a forum for an exchange of ideas and information on recent advances in this field. Besides the Canadian and Romanian researchers involved, the conference benefited from the participation of many specialists from Greece, Hungary and Japan. This proceedings is the second publication of our study group. The first was Lagrange Geometry. Finsler spaces and Noise Applied in Biology and Physics (1]. Lagrange geometry, which is concerned with regular Lagrangians not necessarily homogeneous with respect to the rate (i.e. velocities or production) variables, naturalIy extends Finsler geometry to alIow the study of, for example, metrical structures (i.e. energies) which are not homogeneous in these rates. Most Lagrangians arising in physics falI into this class, for example.
Lagrange geometry and its applications in general relativity, unified field theories and re1ativistic optics has been developed mainly by R. Miron and his students and collaborators in Romania, while P. Antonelli and his associates have developed models in ecology, development and evolution and have rigorously laid the foundations ofFinsler diffusion theory [1] .

Contents

On Deflection Tensor Field in Lagrange Geometrics.- The Differential Geometry of Lagrangians which Generate Sprays.- Partial Nondegenerate Finsler Spaces.- Randers and Kropina Spaces in Geodesic Correspondence.- Deviations of Geodesics in the Fibered Finslerian Approach.- Sasakian Structures on Finsler Manifolds.- A New Class of Spray-Generating Lagranians.- Some Remarks on Automorphisms of Finsler Bundles.- On Construction of Landsbergian Characteristic Subalgebra.- Conservation Laws of Dynamical Systems via Lagrangians of Second Degree.- General Randers Spaces.- Conservation Laws Associated to Some Dynamical Systems.- Biodynamic Systems and Conservation Laws. Applications to Neuronal Systems.- Computational Methods in Lagrange Geometry.- Phase Portraits and Critical Elements of Magnetic Fields Generated by a Piecewise Rectilinear Electric Circuit.- Killing Equations in Tangent Bundle.- Lebesgue Measure and Regular Mappings in Finsler Spaces.- On a Finsler Metric Derived from Ecology.- A Moor's Tensorial Integration in Generalized Lagrange Spaces.- The Lagrange Formalism Used in the Modelling of "Finite Range" Gravity.- On the Quantization of the Complex Scalar Fields in S3xR Space-Time.- Nearly Autoparallel Maps of Lagrange and Finsler Spaces.- Applications of Lagrange Spaces to Physics.- On the Differential Geometry of Nonlocalized Field Theory: Poincaré Gravity.

最近チェックした商品