Magnetohydrodynamics: Waves and Shock Waves in Curved Space-time

個数:

Magnetohydrodynamics: Waves and Shock Waves in Curved Space-time

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 292 p.
  • 言語 ENG
  • 商品コード 9789048143900
  • DDC分類 530

Full Description

For seventy years, we have known that Einstein's theory is essentially a theory of propagation of waves for the gravitational field. Confusion enters, however, through the fact that the word wave, in physics, implies sometimes repetition and sometimes not. This confusion is often increased by he use of Fourier transforms, by which a disturbanse which appears to be without repetition is resolved into periodic wave-trains with all frequencies. But, in a general curved space-time, we have nothing corresponding to Fourier transforms. Here, we consider systematically waves corresponding to the propagation of discontinuities of physical quantities describing either fields (essentially electromagnetic fields and gravitational field), or the motion of a fluid, or together, in magnetohydrodynamics, the changes in time of a field and of a fluid. The main equations, for the different studied phenomena, constitute a hyperbolic system and the study of a formal Cauchy problem is possible. We call ordinary waves the case in which the derivative of superior order appearing in the system are discontinuous at the traverse of a hypersurface, the wave front ; we call shock waves the case where the derivatives of an order inferior by one are discontinuous at the traverse of a wave front. XI xii PREFACE From 1950, many well-known scientits (Taub, Synge, Choquet-B ruhat, etc.) have studied the corresponding equations for different physical phenomena : systems associated to the electromagnetic and gravitational fields, to hydrodynamics and to magnetohydrodynamics.

Contents

I — Tensor Distributions.- II - Maxwell's equations and electromagnetic waves over a curved space-time.- III - Einstein's equations and the Leray theorem.- IV — Gravitational and electromagnetic shock waves.- V — Relativistic hydrodynamics.- VI — The equations of magnetohydrodynamics.- VII — Magnetohydrodynamic shock waves.- VIII — Hugoniot's function and applications.- Annex I — Shock waves and alfven waves.- AI.1. — Singular shocks.- AI.2. — Compatibility between shock waves and Alfven waves.- Annex II — Magnetosonic rays.- AII.1. — Directions of the rays.- AII.2. — Action of 6 on the direction of the ray.- Annex III — Classical approximations of the relativistic shock equations.- AIII.1.— The frame connected with the shock.- AIII.2.— Classical approximation.- Note — Approach to a quantum theory of fields for a curved space-time.- I — Tensor propagators.- NI. 1. — Orientations over a space-time.- NI.2. — Global hyperbolicity.- NI.3. — Bitensors and Dirac bitensors.- NI.4. — Linear differential-tensor operators associated with g...- NI.5. — Elementary Kernels and propagators.- NI.6. — Tensor propagators relative to the space-time of.- Minkowski.- NI.7. — Propagators relative to the operator (? + ?).- II — Applications to quantization problems over a curved space-time.- NII.1. — Commutator for vector Meson.- NII.2. — Commutator for a free electromagnetic field.- NII.3. — Commutator for a varying gravitational field with mass.- NII.4. — Commutator for a varying gravitational field without mass term.- NII.5. — Creation. Annihilation operators.- NII.6. — Dirac field.- References for the Note.

最近チェックした商品