From Artificial Intelligence to Brain Intelligence : AI Compute Symposium 2018 (Tutorials in Circuits and Systems)

個数:
電子版価格
¥23,362
  • 電子版あり
  • ポイントキャンペーン

From Artificial Intelligence to Brain Intelligence : AI Compute Symposium 2018 (Tutorials in Circuits and Systems)

  • ウェブストア価格 ¥28,371(本体¥25,792)
  • River Publishers(2020/02発売)
  • 外貨定価 US$ 130.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,285pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 300 p.
  • 言語 ENG
  • 商品コード 9788770221238
  • DDC分類 006.3

Full Description

The field of AI is not new to researchers, as its foundations were established in the 1950s. After many decades of inattention, there has been a dramatic resurgence of interest in AI, fueled by a confluence of several factors. The benefits of decades of Dennard scaling and Moore's law miniaturization, coupled with the rise of highly distributed processing, have led to massively parallel systems well suited for handling big data. The widespread availability of big data, necessary for training AI algorithms, is another important factor. Finally, the greatly increased compute power and memory bandwidths have enabled deeper networks and new algorithms capable of accuracy rivaling that of human perception.

Already AI has shown success in many diverse areas, including finance (portfolio management, investment strategies), marketing, health care, transportation, gaming, defense, robotics, computer vision, education, search engines, online assistants, image/facial recognition, anomaly detection, spam filtering, online customer service, biometric sensors, and predictive maintenance, to name a few. Despite these remarkable advances, the human brain is still superior in many ways - including, notably, energy efficiency and one-shot learning - giving researchers new areas to explore. In summary, AI research and applications will continue with vigor in software, algorithms, and hardware accelerators. These exciting developments have also brought new questions of ethics and privacy, areas which must be studied in tandem with technological advances.

To continue the success story of AI, the AI Compute symposium was launched with the sponsorship of IBM, IEEE CAS and EDS for the first time. The aim of this publication is to compile all the materials presented by the renowned speakers in the symposium into a book format, serving as a learning tool for the audience.

This book contains two broad topics: general AI advances (chapters 1-5) and neuromorphic computing directions (chapters 6-9). Technical topics discussed in the book include:
1. Research Directions in AI algorithms and systems
2. An ARM perspective on hardware requirements and challenges for AI
3. The new Era of AI hardware
4. AI and the Opportunity for Unconventional Computing Platforms
5. Thermodynamic Computing
6. Brain-like cognitive engineering system
7. BRAINWAY and Nano - Abacus architecture: Brain-inspired Cognitive Computing using Energy Efficient Physical Computational Structures, Algorithms and Architecture Co-Design
8. Applying Lessons from Nature for Today's Computing Challenges
9. Emerging Memories - RRAM Fabric for Neuromorphic Computing Applications

Contents

Preface
1. Research Directions in AI algorithms and systems - Lisa Amini
2. An ARM perspective on hardware requirements and challenges for AI - Robert Aitken
3. The new Era of AI hardware - Jeff Burns
4. AI and the Opportunity for Unconventional Computing Platforms - Naveen Verma
5. Thermodynamic Computing - Todd Hylton
6. Brain like cognitive engineering system - Jan Rabaey
7. BRAINWAY and Nano - Abacus architecture: Brain -inspired Cognitive Computing using Energy Efficient Physical Computational Structures, Algorithms and Architecture Co-Design - Andreas Andreou
8. Applying Lessons from Nature for Today's Computing Challenges - Mike Davies
9. RRAM Fabric for Neuromorphic Computing Applications - Wei Lu

最近チェックした商品