Decarbonization of Copper Production by Optimal Demand Response and Power-to-Hydrogen (Aachener Beiträge zur Technischen Thermodynamik 37) (2022. 221 S. 81 Abb. 21 cm)

個数:

Decarbonization of Copper Production by Optimal Demand Response and Power-to-Hydrogen (Aachener Beiträge zur Technischen Thermodynamik 37) (2022. 221 S. 81 Abb. 21 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783958864580

Full Description

To avoid greenhouse gas (GHG) emissions and mitigate climate change, low-carbon technologies must be used to provide renewable energy and replace fossil fuels. However, this system transition is very material-intensive and leads to high demand for critical materials. Copper is such a material that is essential for electrical applications and many low-carbon technologies. The production of copper itself is an energyintensive process. Thus, two challenges arise that are addressed in this thesis: the flexible process operation in a fluctuating renewable energy system and the avoidance of process-based GHG emissions.

The flexible operation of electricity-intensive processes can support the power grid and provide economic benefits. Demand response (DR) describes operational adjustments based on an economic incentive, such as fluctuating electricity prices. Our initial analysis shows a large DR potential of two electricity-intensive process steps in copper production. To consider the DR potential of the entire production process and to capture the dependencies of the many process steps, we formulate a detailed scheduling model of a representative copper production process. The developed mixed-integer linear program (MILP) allows minimizing the electricity costs without reducing the production volume. This process-wide scheduling enables significant DR potential, reducing annual electricity costs by up to 14.2% and shifting large parts of the electricity demand.

Avoiding process-based GHG emissions is challenging because fossil fuels are hard to substitute in some processes. These processes use fossil fuels as high-temperature process heat and as chemical reducing agents. A promising alternative for these use cases is hydrogen (H2), when H2 is produced from renewable electricity using water electrolysis (Power-to-H2). The oxygen produced as a by-product offers further benefits as it can be utilized in copper production. To optimally design a power-to-H2 system, we formulate a MILP that minimizes the total annualized cost. The resulting CO2 abatement costs are 201EUR/t CO2-eq, which exceeds the current prices of EU allowances. However, a sensitivity analysis shows great potential through further development of water electrolysis.

Decarbonization through Power-to-H2 offers additional DR potential. Our scheduling model of the decarbonized copper production shows that DR strongly contributes to low CO2 abatement costs. Consequently, this work identifies the potential of decarbonized copper production that provides a critical material for low-carbon technologies and supports the power grid through DR.

最近チェックした商品