Handling Data Problems in Machine Learning Applications in Supply Chain Management. : A Multiple-Case Study on the Analysis of Data Augmentation Approaches.. Dissertationsschrift (Publication Series on Logistics and Technologies 10) (2022. 365 S. num., mostly col. illus. and tab. 24.0 cm)

個数:

Handling Data Problems in Machine Learning Applications in Supply Chain Management. : A Multiple-Case Study on the Analysis of Data Augmentation Approaches.. Dissertationsschrift (Publication Series on Logistics and Technologies 10) (2022. 365 S. num., mostly col. illus. and tab. 24.0 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783839617861

Full Description


In recent years, considerable progress has been made in research on artificial intelligence, particularly in the sub-area of machine learning (ML) where information is extracted from huge data sets. In practice, however, the existing data is often dirty, erroneous, not available in sufficient quantity, or does not meet the requirements for a direct application of ML methods. Against this background, data augmentation (DA) methods can be used to improve the data quality with the aim of enabling an initial application of ML methods or improving the results of existing ML models. Today, there is a wide range of different DA methods, which makes it oftentimes difficult to select an appropriate DA method for a particular application. Further, it remains unclear what the potential benefits and possible obstacles are to using DA for ML methods in practice. In this regard, this dissertation aims to contribute to a better understanding of DA and to demonstrate, by means of a multiple-case study, how DA can improve the performance and applicability of ML methods in the context of supply chain management.

最近チェックした商品