Klassifikation von Tumoren mit GP-basierter DNA-Chip-Analyse (2004. 140 S. 210 mm)

個数:

Klassifikation von Tumoren mit GP-basierter DNA-Chip-Analyse (2004. 140 S. 210 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783838677248

Description


(Text)
Diplomarbeit aus dem Jahr 2003 im Fachbereich Informatik - Angewandte Informatik, Note: 1,0, Technische Universität Dortmund (Informatik), Sprache: Deutsch, Abstract: Inhaltsangabe:Zusammenfassung:
Krebserkrankungen sind die zweithäufigste Todesursache in den Industrienationen. Daher ist es wichtig, neue Behandlungsmethoden und Medikamente zu entwickeln, die effizienter und schonender wirken als heutige Therapien. Eine wichtige Voraussetzung für jede Behandlung ist die richtige Diagnose. Bei Tumoren gibt es jedoch viele verschiedene Arten und Subtypen, die sich äußerlich kaum unterscheiden, deren Biologie aber sehr unterschiedlich sein kann.
Daher ist die Erfassung der inneren Vorgänge in den betroffenen Geweben von großer Bedeutung. Ein wichtiges Hilfsmittel ist dabei die DNA-Chip-Technologie. Mit DNA-Chips lassen sich Schnappschüsse der Abläufe in den Zellen machen, indem die Genexpression der verschiedenen Gene gemessen wird. Mit Hilfe dieser Expressionsdaten lassen sich dann Rückschlüsse auf die Situation ziehen. So kann man Typen von Tumoren klassifizieren und erkennen, welche Gene am bösartigen Zellwachstum beteiligt sind.
In der Zukunft kann dies vielleicht einmal die Herstellung neuer, spezifischer Medikamente ermöglichen. Problematisch ist jedoch die Auswertung der Expressionsdaten, da es sich dabei nur um lange Folgen von scheinbar zusammenhangslosen Zahlen handelt. Bisher wurden dafür hauptsächlich statistische Klassifikationsverfahren, wie Nachbarschaftsanalyse, selbstorganisierte Karten oder Support Vector Machines benutzt.
Kern dieser Diplomarbeit ist die Untersuchung, wie sich Genetische Programmierung (GP) für die DNA-Chip-Analyse eignet. GP funktioniert im Allgemeinen gut bei der Erkennung von verborgenen Strukturen in großen Datenmengen. Untersucht werden bestimmte binäre und multiple Klassifikationsprobleme aus dem Bereich der Krebsdiagnose, etwa die Frage, ob bestimmtes Gewebe gesund ist oder aus bösartigen Zellen besteht, oder um welche Art von Krebs es sich handelt. Als Datenbasis dienen verschiedene im Internet verfügbare öffentliche Datenmengen, die auch schon mit anderen Klassifikationsverfahren benutzt worden sind. Die Ergebnisse der GP-Versuche sind kleine automatisch generierte Programme, sogenannte Klassifikatoren, die für die Datensätze die jeweils vorher definierte Fragestellung beantworten sollen. Die Arbeit ist folgendermaßen gegliedert:
In Kapitel 2 wird der biologische Hintergrund erläutert. Das Kapitel ist in zwei Teile aufgeteilt. Im ersten Teil wird ein Einblick in die molekulare Genetik gegeben. Dabei werden Geschichte der Genetik, der Aufbau der DNA, der Vorgang der Proteinbiosynthese (Transkription und Translation) und verschiedene Regulationsmechanismen behandelt. Das zweite Unterkapitel befasst sich mit der Biologie von Krebszellen. Dabei wird gezeigt, wie Krebs entstehen kann, aber auch welche Schutzfunktionen die Zellen dagegen besitzen. Einen wichtigen Abschnitt nehmen außerdem die Onkogene ein. Diese speziellen Gene lösen möglicherweise Krebs aus, wenn es zu bestimmten Mutationen kommt, und sie sind ein Hinweis darauf, dass Tumorwachstum ein in jeder Zelle vorhandenes Programm sein könnte.
DNA-Chips sind der Schwerpunkt von Kapitel 3. Es wird erklärt, wie solche Chips benutzt werden und warum sie so vorteilhaft sind. Außerdem gibt es einen Überblick über die verschiedenen Typen von DNA-Chips, über deren Herstellungsverfahren und über die Auslesemethoden. Der zweite Teil des Kapitels handelt von unterschiedlichen Methoden zur Auswertung der Daten. Dabei werden verschiedene bewährte überwachte und nicht überwachte Verfahren aufgeführt und erläutert.
Kapitel 4 widmet sich der Genetischen Programmierung. Darin werden die Parallelen zur Natur anhand einer Einführung in die biologische Evolution gezeigt. Über einfache evolutionäre Optimierungsverfahren und genetische Algor...

最近チェックした商品