Tutorium Höhere Analysis : Mathematik von Studenten für Studenten erklärt und kommentiert

個数:

Tutorium Höhere Analysis : Mathematik von Studenten für Studenten erklärt und kommentiert

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 294 p.
  • 商品コード 9783827430038

Full Description

Höhere Analysis klingt zunächst einmal sehr schwierig, und je weiter man in seinem Mathematikstudium fortschreitet, desto anspruchsvoller werden die Themen natürlich. Um die Studierenden beim Verständnis für diesen Stoff zu unterstützen, erscheint nun ein weiterer Band der Tutoriums-Reihe der Autoren Kreh, Goertz und Modler.

In dem Buch erläutern die drei Autoren den Stoff der Vorlesungen Analysis 3, Vektoranalysis, Mannigfaltigkeiten und verwandter Vorlesungen. Die Inhalte werden an verständlichen und ausführlichen vorgerechneten Beispielen erklärt.



Das Konzept bleibt wieder das bewährte: Jedes Kapitel ist zweigeteilt in einen mathematischen Teil, in dem die Definitionen, Sätze und Beweise stehen, und einen erklärenden Teil, in dem die schwierigen Definitionen und Sätze auf gewohnt lockere und lustige Art und Weise mit mehr als 100 Beispielen und etwa 50 Abbildungen mit Leben gefüllt werden. So erhält der Leser einerseits einen Blick für mathematisch exakteFormulierungen und andererseits Hilfen und Anschauungen, die wichtig sind, um den Stoff zu verstehen.

 

Contents

I Maß- und Integrationstheorie. Mengensysteme und Mengenfunktionen .- Messbare Abbildungen.- Das Lebesgue-Integral.- Integralsätze und die Berechnung von Lebesgue-Integralen. II Mannigfaltigkeiten. Topologische und differenzierbare Mannigfaltigkeiten.- Tangentialräume.- Untermannigfaltigkeiten.- Integration auf Mannigfaltigkeiten. III Vektoranalysis. Grundbegriffe der Vektoranalysis.- Gauß, Green und Stokes.- Symbolverzeichnis.- Literaturverzeichnis.- Index.

最近チェックした商品