Die Godel'schen Unvollstendigkeitssetze : Eine Gefuhrte Reise Durch Kurt Godels Historischen Beweis

個数:

Die Godel'schen Unvollstendigkeitssetze : Eine Gefuhrte Reise Durch Kurt Godels Historischen Beweis

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 368 p.
  • 言語 GER
  • 商品コード 9783827429995
  • DDC分類 511

Description


(Text)

Im Jahr 1931 erschien im Monatsheft für Mathematik und Physik ein Artikel mit dem geheimnisvoll klingenden Titel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. In dieser Arbeit hat Kurt Gödel zwei Unvollständigkeitssätze bewiesen, die unseren Blick auf die Mathematik von Grund auf verändert haben. Gödels Sätze manifestieren, dass zwischen dem Begriff der Wahrheit und dem Begriff der Beweisbarkeit eine unüberwindbare Kluft besteht, die wir nicht überwinden können. Die Mathematik fügt sich in kein formales Korsett.

Seit ihrer Entdeckung sind die Unvollständigkeitssätze in aller Munde und eine Flut an Büchern widmet sich ihrem fulminanten Inhalt. Doch kaum ein Werk behandelt die Gödel'sche Arbeit in ihrer ursprünglichen Form - und dies hat triftige Gründe: Seine komplexen, in akribischer Präzision beschriebenen Argumentationsketten, die vielen Definitionen und Sätze und die heute weitgehend überholte Notation machen Gödels historisches Meisterwerk zu einer schwer zu lesenden Arbeit.

In diesem Buch wird Gödels Beweis aus dem Jahr 1931 detailliert aufgearbeitet. Alle Einzelschritte werden erläutert und anhand zahlreicher Beispiele verständlich erklärt. Doch dieses Buch ist mehr als eine kommentierte Fassung der historischen Arbeit. Die Beweise der Unvollständigkeitssätze in vollem Umfang zu verstehen, bedingt, die Geschichte zu verstehen, und so versetzen zahlreiche Exkurse den Leser in die Zeit zu Beginn des zwanzigsten Jahrhunderts zurück. Es ist die Zeit, in der die Mathematik die größte Krise ihrer Geschichte durchlebte, die Typentheorie und die axiomatische Mengenlehre Gestalt annahmen und sich Hilberts formalistische Logik und Brouwers intuitionistische Mathematik mit offenem Visier gegenüber standen.



(Table of content)
1 Einleitung.- 2 Die formalen Grundlagen der Mathematik.- 3 Beweisskizze.- 4 System P.- 5 Primitiv-rekursive Funktionen.- 6 Die Grenzen der Mathematik.
(Author portrait)
Prof. Dr. Dirk W. Hoffmann ist Dozent an der Fakultät für Informatik und Wirtschaftsinformatik der Hochschule Karlsruhe - Technik und Wirtschaft. Vom ihm ist im gleichen Verlag das Werk "Grenzen der Mathematik" erschienen.Prof. Dr. Dirk W. Hoffmann ist Dozent an der Fakultät für Informatik und Wirtschaftsinformatik der Hochschule Karlsruhe - Technik und Wirtschaft. Vom ihm ist im gleichen Verlag das Werk "Grenzen der Mathematik" erschienen.

最近チェックした商品