Partielle Differenzialgleichungen : Eine Einführung in analytische und numerische Methoden (2010. xii, 353 S. 80 SW-Abb. 24 cm)

Partielle Differenzialgleichungen : Eine Einführung in analytische und numerische Methoden (2010. xii, 353 S. 80 SW-Abb. 24 cm)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783827419422

Description


(Text)
Dieses Lehrbuch gibt eine Einführung in die partiellen Differenzialgleichungen. Wir beginnen mit einigen ganz konkreten Beispielen aus den Natur- Ingenieur und Wirtschaftswissenschaften. Danach werden elementare Lösungsmethoden dargestellt, z.B. für die Black-Scholes-Gleichung aus der Finanzmathematik. Schließlich wird die analytische Untersuchung großer Klassen von partiellen Differenzialgleichungen dargestellt, wobei Hilbert-Raum-Methoden im Mittelpunkt stehen.
Numerische Verfahren werden eingeführt und mit konkreten Beispielen behandelt.
Zu jedem Kapitel finden sich Übungsaufgaben, mit deren Hilfe der Stoff eingeübt und vertieft werden kann.
Dieses Buch richtet sich an Studierende im Bachelor oder im ersten Master-Jahr sowohl in der (Wirtschafts-)Mathematik als auch in den Studiengängen Informatik, Physik und Ingenieurwissenschaften.

(Table of content)
1 Modellierung, oder wie man auf eine Differenzialgleichung kommt
1.1 Modellierung mit Differenzialgleichungen
1.2 Transport-Prozesse
1.3 Diffusion
1.4 Die Wellengleichung
1.5 Die Black-Scholes-Gleichung
1.6 Jetzt wird es mehrdimensional
1.7 Es gibt noch mehr
1.8 Klassifikation partieller Differenzialgleichungen
1.9 Aufgaben

2 Kategorisierung und Charakteristiken
2.1 Charakteristiken von Anfangswertproblemen auf R
2.2 Gleichungen zweiter Ordnung
2.3 Anfangs- und Randwerte
2.4 Nichtlineare Gleichungen zweiter Ordnung
2.5 Gleichungen höherer Ordnung und Systeme
2.6 Aufgaben

3 Elementare Lösungsmethoden
3.1 Variablentransformation für die Transportgleichung
3.2 Trennung der Variablen am Beispiel der Wellengleichung
3.3 Fourier-Reihen
3.4 Die Laplace-Gleichung
3.5 Die Wärmeleitungsgleichung
3.6 Die Black-Scholes-Gleichung
3.7 Integral-Transformationen
3.8 Aufgaben

4 Hilbert-Räume
4.1 Unitäre Räume
4.2 Orthonormalbasen
4.3 Vollständigkeit
4.4 Orthogonale Projektionen
4.5 Linearformen und Bilinearformen
4.6 Schwache Konvergenz
4.7 Stetige und kompakte Operatoren
4.8 Der Spektralsatz
4.9 Aufgaben

5 Sobolev-Räume und Randwertaufgaben in einer Dimension
5.1 Sobolev-Räume in einer Variablen
5.2 Randwertprobleme auf einem Intervall
5.3 Aufgaben

6 Sobolev-Räume und Hilbert-Raum-Methoden für elliptische Gleichungen
6.1 Regularisierung
6.2 Sobolev-Räume
6.3 Der Raum H1
6.4 Die Poisson-Gleichung mit Dirichlet-Randbedingungen
6.5 Sobolev-Räume und Fourier-Transformation
6.6 LokaleRegularität
6.7 Die Poisson-Gleichung mit inhomogenen Dirichlet-Randbedingungen
6.8 Das Dirichlet-Problem
6.9 Elliptische Gleichungen mit Dirichlet-Randbedingung
6.10 H2-Regularität
6.11 Kommentare zu Kapitel 6
6.12 Aufgaben

7 Elliptische Gleichungen mit Neumann- und Robin-Randbedingungen
7.1 Der Satz von Gauß
7.2 Beweis des Satzes von Gauß
7.3 Die Fortsetzungseigenschaft
7.4 Die Poisson-Gleichung mit Neumann-Randbedingungen
7.5 Der Spursatz und Robin-Randbedingungen
7.6 Kommentare zu Kapitel 7
7.7 Aufgaben

8 Spektralzerlegung und Evolutionsgleichungen
8.1 Ein vektorwertiges Anfangswertproblem
8.2 Die Wärmeleitungsgleichung mit Dirichlet-Randbedingungen
8.3 Die Wärmeleitungsgleichung mit Robin-Randbedingungen
8.4 Die Wellengleichung
8.5 Aufgaben

9 Numerische Verfahren
9.1 Finite Differenzen
9.2 Finite Elemente
9.3 Ergänzungen und Erweiterungen
9.4 Parabolische Probleme
9.5 Aufgaben

10 Maple, oder manchmal hilft der Computer
10.1 Maple®
10.2 Aufgaben
(Author portrait)
Wolfgang Arendt ist Professor für Analysis an der Universität Ulm. Sein Forschungsgebiet sind Funktionalanalysis und Partielle Differenzialgleichungen.

最近チェックした商品