Bernard Bolzano Gesamtausgabe / Reihe II: Nachlaß. B. Wissenschaftliche Tagebücher. Band 12,2: Miscellanea Mathematica 2 (Bernard Bolzano Gesamtausgabe Reihe II: Nachlaß. B. Wissenschaftliche Tagebücher. Band 12,2) (2024. 232 S. 25.4 cm)

個数:

Bernard Bolzano Gesamtausgabe / Reihe II: Nachlaß. B. Wissenschaftliche Tagebücher. Band 12,2: Miscellanea Mathematica 2 (Bernard Bolzano Gesamtausgabe Reihe II: Nachlaß. B. Wissenschaftliche Tagebücher. Band 12,2) (2024. 232 S. 25.4 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 商品コード 9783772825729

Description


(Text)
Die Notizen von Heft 22 der MM stammen aus den Jahren 1830-1832. Am Anfang werden die Begriffe des Raumes und der Zeit erörtert. Neben Anmerkungen zum Begriff der Größe findet sich darin auch ein genau gegliederter Plan von Bolzanos 'Größenlehre'. Bei der Darstellung der arithmetischen Begriffe geht es Bolzano darum, gegenstandslose Begriffe zu vermeiden. Über imaginäre und irrationale Größen in der Zahlentheorie berichtet er in Anlehnung an die damalige Zeitschriftenliteratur (Legendre, Gergonne, Fourier, Cauchy, Crelle). Die Begriffe der Stetigkeit und der stetigen Funktionen sowie die Bestimmbarkeit von Funktionen werden an mehreren Stellen behandelt. Von besonderer Bedeutung sind die Ausführungen zur Naturphilosophie: Bolzano vertritt dabei im Gegensatz zur 1. Aufl. der 'Athanasia' (und in der 2. Aufl.) die Ansicht, dass es in jedem Punkt des Raumes ein Atom gebe und dass daher kein Vakuum existiert.
(Text)
The notes of part 22 of the 'Miscellanea Mathematica' were written between July of 1830 and August of 1832. Bolzano's natural philosophy of his later years was based on the assumption that the entire universe had a nuclear particle structure. Unlike the classic atomist, he believed that there was an atom at every point in space. Thus there is no vacuum. This means that no substance is isolated. This made him question the opposite view which he had expressed previously in the 'Athanasia'. His refutation in the second edition of the 'Athanasia' is given in detail in the 'Miscellanea Mathematica'. At the beginning of the 'Miscellanea Mathematica 22', he dealt with the definition of the concepts of space and time. According to Bolzano, the traditional definitions of the concepts of line, surface and solid were in need of improvement, and this induced him to give a detailed explanation. During the years of his reclusiveness after his dismissal in 1819 from his position as head of the department for religious studies at the University of Prague, Bolzano had been studying the logical foundations of mathematics and the foundations of logic. These studies were reflected in his theory of science. When he returned to pure mathematics after about a decade, he began work on a new encyclopedic work, the 'Größenlehre', (Theory of Quantities). The notes in this volume contain a precisely structured plan of this work from the year 1831. In explaining the first arithmetical terms, Bolzano tries to avoid abstract terms. Some abstract terms are imaginary. Referring to contemporary scientific journals, he gives a report on imaginary and irrational quantities in the theory of numbers. On the basis of Legendre's discussion of Galois' problem of the solvability of algebraic equations, Bolzano suggests a simple method. He gives a detailed account of Gergonne's geometric treatment of Newton's method of finding the roots of a numerical equation by approximation and provides a counterexample for Fourier's assertion that a characteristic of the existence of the real roots of an equation also applies to transcendental roots. Furthermore he tries to find a simpler formulation of Cauchy's proof that each polynomial has a complex root. Bolzano studies the proof provided by several famous analytic theorems. He mentions Cauchy's simple and strict proof of Taylor's theorem and Crelle's attempt to expand this within the context of general theory of analytic functions. He studies Cauchy's theory of the infinite, examines several theorems and works his way around to the theory of tangency and discusses infinite series. There are no infinite large and small numbers, these terms are meaningless. The pivotal concepts of continuity and continuous functions are dealt with in several places. What is particularly remarkable is the discussion of the determinability of the functions. There was deemed to be a discrepancy between Bolzano's theory of functions and his paradoxes ofthe infinite. One way to eliminate this discrepancy would be to find an exact definition of the concept of determinability. A continuous function f is exactly determinable when the difference (x+ x) -f(x) retains the same sign within certain values of x irregardless of how close they may be. Thus a determinable function is a continuous, piecewise monotonic function.

最近チェックした商品