Domain Decomposition in Optimal Control Problems (International Series of Numerical Mathematics (ISNM) Vol.148) (2004. 468 p.)

個数:

Domain Decomposition in Optimal Control Problems (International Series of Numerical Mathematics (ISNM) Vol.148) (2004. 468 p.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 468 p.
  • 商品コード 9783764321949

Full Description

This monograph considers problems of optimal control for partial differential equa­ tions of elliptic and, more importantly, of hyperbolic types on networked domains. The main goal is to describe, develop and analyze iterative space and time domain decompositions of such problems on the infinite-dimensional level. While domain decomposition methods have a long history dating back well over one hundred years, it is only during the last decade that they have become a major tool in numerical analysis of partial differential equations. A keyword in this context is parallelism. This development is perhaps best illustrated by the fact that we just encountered the 15th annual conference precisely on this topic. Without attempting to provide a complete list of introductory references let us just mention the monograph by Quarteroni and Valli [91] as a general up-to-date reference on domain decomposition methods for partial differential equations. The emphasis of this monograph is to put domain decomposition methods in the context of so-called virtual optimal control problems and, more importantly, to treat optimal control problems for partial differential equations and their decom­ positions by an all-at-once approach. This means that we are mainly interested in decomposition techniques which can be interpreted as virtual optimal control problems and which, together with the real control problem coming from an un­ derlying application, lead to a sequence of individual optimal control problems on the subdomains that are iteratively decoupled across the interfaces.

Contents

1 Introduction.- 2 Background Material on Domain Decomposition.- 2.1 Introduction.- 2.2 Domain Decomposition for 1-d Problems.- 2.3 Domain Decomposition Methods for Elliptic Problems.- 3 Partial Differential Equations on Graphs.- 3.1 Introduction.- 3.2 Partial Differential Operators on Graphs.- 3.3 Elliptic Problems on Graphs.- 3.4 Hyperbolic Problems on Graphs.- 4 Optimal Control of Elliptic Problems.- 4.1 Introduction.- 4.2 Distributed Controls.- 4.3 Boundary Controls.- 5 Control of Partial Differential Equations on Graphs.- 5.1 Introduction.- 5.2 Elliptic Problems.- 5.3 Hyperbolic Problems.- 6 Control of Dissipative Wave Equations.- 6.1 Introduction.- 6.2 Optimal Dissipative Boundary Control.- 6.3 Time Domain Decomposition.- 6.4 Decomposition of the Spatial Domain.- 6.5 Space and Time Domain Decomposition.- 7 Boundary Control of Maxwell's System.- 7.1 Introduction.- 7.2 Optimal Dissipative Boundary Control.- 7.3 Time Domain Decomposition.- 7.4 Decomposition of the Spatial Domain.- 7.5 Time and Space Domain Decomposition.- 8 Control of Conservative Wave Equations.- 8.1 Introduction.- 8.2 Optimal Boundary Control.- 8.3 Time Domain Decomposition.- 8.4 Decomposition of the Spatial Domain.- 8.5 The Exact Reachability Problem.- 9 Domain Decomposition for 2-D Networks.- 9.1 Elliptic Systems on 2-D Networks.- 9.2 Optimal Control on 2-D Networks.- 9.3 Decomposition of the Spatial Domain.

最近チェックした商品