Differential- und Integralrechnung für die Natur- und Ingenieurwissenschaften : Analytische und numerische Methoden

  • ポイントキャンペーン

Differential- und Integralrechnung für die Natur- und Ingenieurwissenschaften : Analytische und numerische Methoden

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 596 p.
  • 商品コード 9783662727041

Description

Das Lehrbuch bietet einen breiten Einblick in analytische und numerische Berechnungsmöglichkeiten von Ableitungen und Integralen sowie in die Nutzung der Differential- und Integralrechnung bei der Lösung von Problemen aus den Ingenieur- und Naturwissenschaften, insbesondere aus der Geodäsie und Kartographie. Schwerpunkte sind dabei die Berechnung von Maxima und Minima von Funktionen einer und mehrerer reeller Veränderlicher, die Approximation und Interpolation von Funktionen, die Lösung nichtlinearer Gleichungen, Fehlerrechnung sowie ein Einblick in die Ausgleichungsrechnung. Die Kenntnis der numerischen Verfahren bildet die Basis für die Entwicklung von Software zur Computersimulation von Problemstellungen aus den Natur- und Ingenieurwissenschaften. 
Die angegebenen Rechenregeln und Gesetzmäßigkeiten werden anschaulich motiviert, begründet und anhand zahlreicher Beispiele demonstriert. 
Es wird diskutiert, wie die analytischen Berechnungsmöglichkeiten zur Entwicklung von Ideen für numerische Berechnungsverfahren genutzt werden. Außerdem wird erklärt, wie man mit Hilfe der theoretischen Aussagen aus der Differential- und Integralrechnung Abschätzungen der Genauigkeit von Näherungswerten erhält, welche mittels numerischer Verfahren berechnet wurden. Dadurch wird das Zusammenspiel von analytischen und numerischen Methoden verdeutlicht.  

Der Inhalt

Grenzwerte und Stetigkeit - Berechnung von Ableitungen und Integralen von Funktionen einer reellen Veränderlichen - Berechnung partieller Ableitungen von Funktionen mehrerer reeller Veränderlicher - numerische Differentiation und Integration - Bestimmung von Maxima und Minima von Funktionen - Approximation und Interpolation von Funktionen - Lösung nichtlinearer Gleichungen - Fehlerrechnung - Ausgleichungsrechnung

Die Zielgruppe

Studierende der Natur- und Ingenieurwissenschaften

Vorwort.- 1 Grenzwerte und Stetigkeit von Funktionen.- 2 Differentialrechnung für Funktionen einer reellen Veränderlichen und Anwendungen.- 3 Differentialrechnung und numerische Verfahren.- 4 Integralrechnung für Funktionen einer reellen Veränderlichen.- 5 Differentialrechnung für Funktionen mehrerer reeller Veränderlicher.- Literaturverzeichnis.- Index.

Prof. Dr. Michael Jung lehrt seit 2004 Mathematik und deren fachspezifische Anwendungen in Studiengängen der Fakultäten Geoinformation und Informatik/Mathematik der Hochschule für Technik und Wirtschaft Dresden.


最近チェックした商品