Measure-Valued Branching Markov Processes (Probability Theory and Stochastic Modelling 103) (2. Aufl. 2024. xv, 475 S. XV, 475 p. 1 illus. 235 mm)

個数:

Measure-Valued Branching Markov Processes (Probability Theory and Stochastic Modelling 103) (2. Aufl. 2024. xv, 475 S. XV, 475 p. 1 illus. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783662669129

Full Description

This book provides a compact introduction to the theory of measure-valued branching processes, immigration processes and Ornstein-Uhlenbeck type processes.

Measure-valued branching processes arise as high density limits of branching particle systems. The first part of the book gives an analytic construction of a special class of such processes, the Dawson-Watanabe superprocesses, which includes the finite-dimensional continuous-state branching process as an example. Under natural assumptions, it is shown that the superprocesses have Borel right realizations. Transformations are then used to derive the existence and regularity of several different forms of the superprocesses. This technique simplifies the constructions and gives useful new perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The second part investigates immigration structures associated with the measure-valued branching processes. The structures are formulated by skewconvolution semigroups, which are characterized in terms of infinitely divisible probability entrance laws. A theory of stochastic equations for one-dimensional continuous-state branching processes with or without immigration is developed, which plays a key role in the construction of measure flows of those processes. The third part of the book studies a class of Ornstein-Uhlenbeck type processes in Hilbert spaces defined by generalized Mehler semigroups, which arise naturally in fluctuation limit theorems of the immigration superprocesses.

This volume is aimed at researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.

Contents

Preface to the Second Edition.- Preface to the First Edition.- Conventions and Notations.- 1. Random Measures on Metric Spaces.- 2. Measure-Valued Branching Processes.- 3. One-Dimensional Branching Processes.- 4. Branching Particle Systems.- 5. Basic Regularities of Superprocesses.- 6. Constructions by Transformations.- 7. Martingale Problems of Superprocesses.- 8. Entrance Laws and Kuznetsov Measures.- 9. Structures of Independent Immigration.- 10. One-Dimensional Stochastic Equations.- 11. Path-Valued Processes and Stochastic Flows.- 12. State-Dependent Immigration Structures.- 13. Generalized Ornstein-Uhlenbeck Processes.- 14. Small-Branching Fluctuation Limits.- A. Markov Processes.- References.- Subject Index.- Symbol Index. 

最近チェックした商品