初等ガロア理論(テキスト)<br>Elementary Galois Theory : A Constructive Approach (Mathematics Study Resources 3) (2024. xvii, 301 S. XVII, 301 p. 31 illus., 15 illus. in color. 240 mm)

個数:

初等ガロア理論(テキスト)
Elementary Galois Theory : A Constructive Approach (Mathematics Study Resources 3) (2024. xvii, 301 S. XVII, 301 p. 31 illus., 15 illus. in color. 240 mm)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783662666425

Full Description

Why is the squaring of the circle, why is the division of angles with compass and ruler impossible? Why are there general solution formulas for polynomial equations of degree 2, 3 and 4, but not for degree 5 or higher?

This textbook deals with such classical questions in an elementary way in the context of Galois theory. It thus provides a classical introduction and at the same time deals with applications. The point of view of a constructive mathematician is consistently adopted: To prove the existence of a mathematical object, an algorithmic construction of that object is always given. Some statements are therefore formulated somewhat more cautiously than is classically customary; some proofs are more elaborately conducted, but are clearer and more comprehensible. Abstract theories and definitions are derived from concrete problems and solutions and can thus be better understood and appreciated.

The material in this volume can be covered in a one-semester lecture on algebra right at the beginning of mathematics studies and is equally suitable for first-year students at the Bachelor's level and for teachers.

The central statements are already summarised and concisely presented within the text, so the reader is encouraged to pause and reflect and can repeat content in a targeted manner. In addition, there is a short summary at the end of each chapter, with which the essential arguments can be comprehended step by step, as well as numerous exercises with an increasing degree of difficulty.

The translation was done with the help of artificial intelligence. A subsequent human revision was done primarily in terms of content.

 

 

 

Contents

1. introduction.- 2. the fundamental theorem of algebra.- 3. impossibility of squaring the circle.- 4. impossibility of cube doubling and angle division.- 5. on the constructability of regular n-corners.- 6. on the solvability of polynomial equations.- A constructive mathematics.- B linear algebra.- C analysis.

最近チェックした商品