So einfach ist Mathematik - Gewöhnliche Differentialgleichungen für Anwender (1. Aufl. 2022. 2022. ix, 214 S. IX, 214 S. 55 Abb. 235 mm)

個数:

So einfach ist Mathematik - Gewöhnliche Differentialgleichungen für Anwender (1. Aufl. 2022. 2022. ix, 214 S. IX, 214 S. 55 Abb. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783662648308

Full Description

Sie stehen in Ihrem Studium am Anfang der Beschäftigung mit Differentialgleichungen. Das Buch bietet Ihnen eine breitgefächerte und anwendungsorientierte Einführung in dieses Thema. Es motiviert und veranschaulicht die zentralen Begriffe und diskutiert die mathematischen Ergebnisse vor dem Anwendungshintergrund.Das Buch ist aus Erfahrungen von Studierenden mit einer ingenieurmathematischen Vorlesung zu gewöhnlichen Differentialgleichungen entstanden. Nach einer Einführung zu Anwendungen und ihrer Modellierung mithilfe gewöhnlicher Differentialgleichungen folgen kurz moderne Hilfsmittel zur rechnergestützten Behandlung. Lösungsverfahren für wichtige Differentialgleichungstypen und ein Kapitel zu Fragen der Existenz und Eindeutigkeit von Lösungen führen auf den umfangreichsten Anteil des Buches zu linearen Differentialgleichungen und linearen Differentialgleichungssysteme. Auf dem Federschwinger als Prototypen eines schwingenden Systems liegt ein Fokus. Abschließend werden die Laplace-Transformation, ein Randwertproblem und grundsätzlichen Fragen dynamischer Systeme angesprochen. Das Buch erzählt die mathematischen Zusammenhänge in leichtem Ton. Kleinere Aufgaben regen Sie an, eigene Veranschaulichungen, Zugänge und Lösungsansätze zu entwickeln. Sie werden Differentialgleichungen als ein wertvolles Werkzeug zur Beschreibung und Analyse von natur- und ingenieurwissenschaftlichen Prozessen schätzen.

Contents

Einführung.- Ausgewählte Differentialgleichungen und Lösungsansätze.- Existenz und Eindeutigkeit der Lösungen von Differentialgleichungen.- Lineare Differentialgleichungen höherer Ordnung.- Lineare Differentialgleichungen mit konstanten Koeffizienten.- Systeme von linearen Differentialgleichungen.- Laplace-Transformation.- Ein Randwertproblem.- Dynamische Systeme.

最近チェックした商品