Taylorentwicklung, Jacobi-Matrix, ∇, δ(x) und Co. : Rechenmethoden für Studierende der Physik (1. Aufl. 2020)

個数:

Taylorentwicklung, Jacobi-Matrix, ∇, δ(x) und Co. : Rechenmethoden für Studierende der Physik (1. Aufl. 2020)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 499 p.
  • 言語 GER
  • 商品コード 9783662597514

Full Description

Dieses Lehrbuch bietet eine Einführung in die wichtigsten mathematischen Methoden, die Studierende der Physik in den ersten Semestern benötigen. Der Fokus liegt auf der Anwendung dieser Methoden, nicht auf ihrer Begründung. Mit zahlreichen Übungsaufgaben am Ende der Kapitel können Leserinnen und Leser ihre Fähigkeiten überprüfen.

Computeralgebrasysteme bilden ein unverzichtbares Hilfsmittel bei der Lösung von Problemen der angewandten Mathematik. Die Entwicklung der mathematischen Methoden wird daher durch spezielle MapleTM-Worksheets ergänzt, die den Einstieg in die Nutzung solcher Systeme erleichtern. Auch eine Reihe der Übungsaufgaben erfordert einen entsprechenden Einsatz von MapleTM. Die Worksheets stehen im Buch sowie online zur Verfügung.

Zielgruppe sind in erster Linie Studierende der Physik in den ersten Semestern an deutschsprachigen Universitäten und Hochschulen. Das Buch baut auf einem Kenntnisstand in Mathematik auf, wie er mit dem Abitur erreicht wird.

Aus dem Inhalt

Differentiation und Integration
Differentielle Modellbildung
Lineare Räume und lineare Abbildungen
Mehrdimensionale Differentiation und Integration, krummlinige Koordinatensysteme
Gewöhnliche Differentialgleichungen, Newton'sche Mechanik
Partielle Differentialgleichungen, Green'sche Funktion, Fourier-Transformation

Der Autor

Andreas Engel ist Professor für theoretische Physik an der Universität Oldenburg. Das Buch basiert auf seiner Vorlesung „Einführung in die theoretische Physik", die er mehrfach gehalten hat. Sein Arbeitsgebiet liegt in der statistischen Physik.

Contents

Vorwort.- I Unendlich kleine Größen.- 1 Differentiation.- 2 Integration.- 3 Differentielle Modellbildung.- II Linerare Räume.- 4 Dreidimensionale Vektoren.- 5 Allgemeine Vektorräume.- 6 Linerare Abbildungen.- III Mehrdimensionale Differentiation und Integration.- 7 Mehrdimensionale Differentiation.- 8 Mehrdimensionale Integration.- 9 Krummlinige Koordinatensysteme.- IV Gewöhnliche Differentialgleichungen.- 10 Gewöhnliche Differentialgleichungen.- 11 Newton'sche Mechanik.- 12 Extrema.- V Partielle Differentialgleichungen.- 13 Wichtige Beispiele.- 14 Separationsansätze.- 15 Die Green'sche Funktion.- 16 Die Fourier-Transformation.-  Literaturverzeichnis.- Index.

最近チェックした商品