Machine Learning for Cyber Physical Systems : Selected papers from the International Conference ML4CPS 2018 (Technologien für die intelligente Automation) (2019)

個数:

Machine Learning for Cyber Physical Systems : Selected papers from the International Conference ML4CPS 2018 (Technologien für die intelligente Automation) (2019)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 136 p.
  • 言語 ENG
  • 商品コード 9783662584842
  • DDC分類 004.6

Full Description

This Open Access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS - Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, October 23-24, 2018. 

Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.  

Contents

Machine Learning for Enhanced Waste Quantity Reduction: Insights from the MONSOON Industry 4.0 Project.- Deduction of time-dependent machine tool characteristics by fuzzy-clustering.- Unsupervised Anomaly Detection in Production Lines.- A Random Forest Based Classifer for Error Prediction of Highly Individualized Products.- Web-based Machine Learning Platform for Condition-Monitoring.- Selection and Application of Machine Learning-Algorithms in Production Quality.- Which deep artifificial neural network architecture to use for anomaly detection in Mobile Robots kinematic data.- GPU GEMM-Kernel Autotuning for scalable machine learners.- Process Control in a Press Hardening Production Line with Numerous Process Variables and Quality Criteria.- A Process Model for Enhancing Digital Assistance in Knowledge-Based Maintenance.- Detection of Directed Connectivities in Dynamic Systems for Different Excitation Signals using Spectral Granger Causality.- Enabling Self-Diagnosis of AutomationDevices through Industrial Analytics.- Making Industrial Analytics work for Factory Automation Applications.- Application of Reinforcement Learning in Production Planning and Control of Cyber Physical Production Systems.- LoRaWan for Smarter Management of Water Network: From meteringto data analysis.

最近チェックした商品