Interactive Knowledge Discovery and Data Mining in Biomedical Informatics : State-of-the-Art and Future Challenges (Lecture Notes in Computer Science) (2014)

個数:

Interactive Knowledge Discovery and Data Mining in Biomedical Informatics : State-of-the-Art and Future Challenges (Lecture Notes in Computer Science) (2014)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 357 p.
  • 言語 ENG
  • 商品コード 9783662439678
  • DDC分類 006.312

Full Description

One of the grand challenges in our digital world are the large, complex and often weakly structured data sets, and massive amounts of unstructured information. This "big data" challenge is most evident in biomedical informatics: the trend towards precision medicine has resulted in an explosion in the amount of generated biomedical data sets. Despite the fact that human experts are very good at pattern recognition in dimensions of <= 3; most of the data is high-dimensional, which makes manual analysis often impossible and neither the medical doctor nor the biomedical researcher can memorize all these facts. A synergistic combination of methodologies and approaches of two fields offer ideal conditions towards unraveling these problems: Human-Computer Interaction (HCI) and Knowledge Discovery/Data Mining (KDD), with the goal of supporting human capabilities with machine learning.

This state-of-the-art survey is an output of the HCI-KDD expert network and features 19 carefully selected and reviewed papers related to seven hot and promising research areas: Area 1: Data Integration, Data Pre-processing and Data Mapping; Area 2: Data Mining Algorithms; Area 3: Graph-based Data Mining; Area 4: Entropy-Based Data Mining; Area 5: Topological Data Mining; Area 6 Data Visualization and Area 7: Privacy, Data Protection, Safety and Security.

Contents

Knowledge Discovery and Data Mining in Biomedical Informatics: The Future Is in Integrative, Interactive Machine Learning Solutions.- Visual Data Mining: Effective Exploration of the Biological Universe.- Darwin or Lamarck? Future Challenges in Evolutionary Algorithms for Knowledge Discovery and Data Mining.- On the Generation of Point Cloud Data Sets: Step One in the Knowledge Discovery Process.- Adapted Features and Instance Selection for Improving Co-training.- Knowledge Discovery and Visualization of Clusters for Erythromycin Related Adverse Events in the FDA Drug Adverse Event Reporting System.- On Computationally-Enhanced Visual Analysis of Heterogeneous Data and Its Application in Biomedical Informatics.- A Policy-Based Cleansing and Integration Framework for Labour and Healthcare Data.- Interactive Data Exploration Using Pattern Mining.- Resources for Studying Statistical Analysis of Biomedical Data and R.- A Kernel-Based Framework for Medical Big-Data Analytics.- On Entropy-Based Data Mining.- Sparse Inverse Covariance Estimation for Graph Representation of Feature Structure.- Multi-touch Graph-Based Interaction for Knowledge Discovery on Mobile Devices: State-of-the-Art and Future Challenges.- Intelligent Integrative Knowledge Bases: Bridging Genomics, Integrative Biology and Translational Medicine.- Biomedical Text Mining: State-of-the-Art, Open Problems and Future Challenges.- Protecting Anonymity in Data-Driven Biomedical Science.- Biobanks - A Source of Large Biological Data Sets: Open Problems and Future Challenges.- On Topological Data Mining.

最近チェックした商品