Nested Simulations: Theory and Application (Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics)

個数:

Nested Simulations: Theory and Application (Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 137 p.
  • 商品コード 9783658438524

Full Description

Maximilian Klein analyses nested Monte Carlo simulations for the approximation of conditional expected values. Thereby, the book deals with two general risk functional classes for conditional expected values, on the one hand the class of moment-based estimators (notable examples are the probability of a large loss or the lower partial moments) and on the other hand the class of quantile-based estimators. For both functional classes, the almost sure convergence of the respective estimator is proven and the underlying convergence speed is quantified. In particular, the class of quantile-based estimators has important practical consequences especially for life insurance companies since the Value-at-Risk falls into this class and thus covers the solvency capital requirement problem. Furthermore, a novel non parametric confidence interval method for quantiles is presented which takes the additional noise of the inner simulation into account.

Contents

Introduction.- Basic Concepts, Probability Inequalities and Limit Theorems.- Almost Sure Convergence of Moment-Based Estimators.- Almost Sure Convergence of Quantile-Based Estimators.- Non Parametric Confidence Intervals for Quantiles.- Numerical Analysis.- Conclusion.