Algebraic Geometry II: Cohomology of Schemes : With Examples and Exercises (Springer Studium Mathematik - Master)

個数:

Algebraic Geometry II: Cohomology of Schemes : With Examples and Exercises (Springer Studium Mathematik - Master)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 869 p.
  • 言語 ENG
  • 商品コード 9783658430306

Full Description

This book completes the comprehensive introduction to modern algebraic geometry which was started with the introductory volume Algebraic Geometry I: Schemes.
It begins by discussing in detail the notions of smooth, unramified and étale morphisms including the étale fundamental group. The main part is dedicated to the cohomology of quasi-coherent sheaves. The treatment is based on the formalism of derived categories which allows an efficient and conceptual treatment of the theory, which is of crucial importance in all areas of algebraic geometry. After the foundations are set up, several more advanced topics are studied, such as numerical intersection theory, an abstract version of the Theorem of Grothendieck-Riemann-Roch, the Theorem on Formal Functions, Grothendieck's algebraization results and a very general version of Grothendieck duality. The book concludes with chapters on curves and on abelian schemes, which serve to develop the basics of the theory of these two important classes of schemes on an advanced level, and at the same time to illustrate the power of the techniques introduced previously.
The text contains many exercises that allow the reader to check their comprehension of the text, present further examples or give an outlook on further results.

Contents

Introduction.- 17 Differentials.- 18 Étale and smooth morphisms.- 19 Local complete intersections.- 20 The étale topology.- 21 Cohomology of sheaves of modules.- 22 Cohomology of quasi-coherent modules.- 23 Cohomology of projective and proper schemes.- 24 Theorem on formal functions.- 25 Duality.- 26 Curves.- 27 Abelian schemes.- F Homological algebra.- G Commutative algebra II.

最近チェックした商品