Algebra für Einsteiger : Von der Gleichungsauflösung zur Galois-Theorie (6TH)

個数:

Algebra für Einsteiger : Von der Gleichungsauflösung zur Galois-Theorie (6TH)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 242 p.
  • 商品コード 9783658261511

Full Description

Dieses Buch ist eine leicht verständliche Einführung in die Algebra, die den historischen und konkreten Aspekt in den Vordergrund rückt. Der rote Faden ist eines der klassischen und fundamentalen Probleme der Algebra: Bereits vor 4000 Jahren wurden quadratische Gleichungen gelöst. Im 16. Jahrhundert fand man allgemeine Lösungsformeln für Gleichungen dritten und vierten Grades, aber entsprechende Bemühungen für Gleichungen fünften Grades schlugen fehl. Nach fast dreihundertjähriger Suche führte dies schließlich zur Begründung der so genannten Galois-Theorie: Mit ihrer Hilfe kann festgestellt werden, ob eine Gleichung mittels geschachtelter Wurzelausdrücke lösbar ist. Das Buch liefert eine gute Motivation für die moderne Galois-Theorie, die den Studierenden oft so abstrakt und schwer erscheint.Gemäß der Intention des Buchs, auch die Geschichte der Algebra zu berücksichtigen, wurden in dieser Neuauflage diverse Faksimiles ergänzt. Begleitend zu den Faksimiles wurde insbesondere das erste Kapitel erheblich erweitert, so dass die maßgeblichen kulturhistorischen Kontexte der Epochen bis Cardano deutlicher werden. Schließlich wurden zum Kapitel über Artins Beweis des Hauptsatzes der Galois-Theorie einige Anmerkungen zum historischen und mathematischen Hintergrund hinzugefügt.

Contents

Kubische Gleichungen.- Casus irreducibilis, die Geburtsstunde der komplexen Zahlen.- Biquadratische Gleichungen.- Gleichungen n-ten Grades und ihre Eigenschaften.- Die Suche nach weiteren Auflösungsformeln.- Gleichungen, die sich im Grad reduzieren lassen.- Die Konstruktion regelmäßiger Vielecke.- Auflösung von Gleichungen fünften Grades.- Die Galois-Gruppe einer Gleichung.- Algebraische Strukturen und Galois-Theorie.- Artins Version des Hauptsatzes der Galois-Theorie.

最近チェックした商品