- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
Dominik Koch weist in seinen Studien nach, dass es mit Hilfe der k-Nächsten-Nachbarn möglich ist, die Ergebnisse anderer Klassifikationsverfahren so zu verbessern, dass sie wieder eine Konkurrenz zu dem meist dominierenden Random Forest darstellen. Das von Fix und Hodges entwickelte k-Nächste-Nachbarn-Verfahren ist eines der simpelsten und zugleich intuitivsten Klassifikationsverfahren. Nichtsdestotrotz ist es in den meisten Fällen in der Lage, ziemlich gute Klassifikationsergebnisse zu liefern. Diesen Informationsgehalt der k-Nächsten-Nachbarn kann man sich zu Nutze machen, um bereits etablierte Verfahren zu verbessern. In diesem Buch werden die Auswirkungen der k-Nächsten-Nachbarn auf den Boosting-Ansatz, Lasso und Random Forest in Bezug auf binäre Klassifikationsprobleme behandelt.
Contents
Grundlagen der k-Nächsten-Nachbarn.- Vorstellung der zu erweiternden Klassifikationsverfahren.- Benchmarking anhand von simulierten Daten.- Anwendung der modifizierten Verfahren auf reale Datensätze.