Einführung in die Transzendenten Zahlen (Grundlehren der mathematischen Wissenschaften)

個数:

Einführung in die Transzendenten Zahlen (Grundlehren der mathematischen Wissenschaften)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 150 p.
  • 言語 GER
  • 商品コード 9783642946950
  • DDC分類 510

Contents

I. Kapitel. Konstruktion transzendenter Zahlen.- 1. Der LIOUVILLEsche Approximationssatz.- 2. LIOUVILLEsche transzendente Zahlen.- 3. Verallgemeinerung des LIOUVILLEschen Satzes.- 4. Eine Anwendung des verallgemeinerten LIOUVILLEschen Satzes.- 5. Schärfere Approximationssätze. Der Satz von THUE-SIEGEL-ROTH.- 6. Weitere Anwendungen auf transzendente Zahlen.- II. Kapitel. Transzendente Zahlen als Werte von periodischen Funktionen und deren Umkehrfunktionen.- 1. Irrationalität von ?.- 2. Transzendenz der Werte der Exponentialfunktion und des Logarithmus.- 3. Arithmetische Bedingungen für algebraische Abhängigkeit von Funktionen.- 4. Transzendenzresultate, die mit der Exponentialfunktion, den elliptischen Funktionen und der Modulfunktion zusammenhängen.- III. Kapitel. Eine Klasseneinteilung der Zahlen nach MAHLER.- 1. Einführung der MAHLERschen Klassifikation.- 2. Eigenschaften der MAHLERschen Klasseneinteilung.- 3. Die Klassifikation von KOKSMA und ihr Zusammenhang mit der MAHLERschen Einteilung.- 4. Eine maßtheoretische Frage.- IV. Kapitel. Das Transzendenzmaß.- 1. Ein Transzendenzmaß für e.- 2. Eine GELFONDsche Methode zur Annäherung von ?ß durch algebraische Zahlen.- 3. Eine verallgemeinerte Fragestellung und weitere Resultate.- V. Kapitel. Algebraische Unabhängigkeit transzendenter Zahlen (Die SIEGELsche Methode).- 1. Arithmetische Hilfsbetrachtungen.- 2. Der LINDEMANNsche Satz.- 3. Algebraische Beziehungen zwischen BESSELschen Funktionen und ihren ersten Ableitungen.- 4. Der SIEGELsche Satz über die Werte von BESSELschen Funktionen und weitere Resultate.- Einige offene Fragestellungen.- Namenverzeichnis.

最近チェックした商品