Recent Synthetic Differential Geometry (Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. 2. Folge) (Reprint)

個数:

Recent Synthetic Differential Geometry (Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. 2. Folge) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9783642880599
  • DDC分類 511

Full Description

A synthetic approach to intrinsic differential geometry in the large and its connections with the foundations of geometry was presented in "The Geometry of Geodesics" (1955, quoted as G). It is the purpose of the present report to bring this theory up to date. Many of the later ip.vestigations were stimulated by problems posed in G, others concern newtopics. Naturally references to G are frequent. However, large parts, in particular Chapters I and III as weIl as several individual seetions, use only the basic definitions. These are repeated here, sometimes in a slightly different form, so as to apply to more general situations. In many cases a quoted result is quite familiar in Riemannian Geometry and consulting G will not be found necessary. There are two exceptions : The theory of paralleIs is used in Sections 13, 15 and 17 without reformulating all definitions and properties (of co-rays and limit spheres). Secondly, many items from the literature in G (pp. 409-412) are used here and it seemed superfluous to include them in the present list of references (pp. 106-110). The quotations are distinguished by [ ] and ( ), so that, for example, FreudenthaI [1] and (I) are found, respectively, in G and here.

Contents

I. Completeness, Finite Dimensionality, Differentiability.- 1. The Theorem of Hopf and Rinow.- 2. Geodesic Completeness. Local Homogeneity.- 3. The Topology of r-Spaces.- 4. Finite-Dimensional G-Spaces.- 5. Differentiability.- II. Desarguesian Spaces.- 6. Similarities.- 7. Imbeddings of Desarguesian Spaces.- 8. A Characterization of Hilbert's and Minkowski's Geometries.- III. Length Preserving Maps.- 9. Shrinkages, Equilong Maps, Local Isometries.- 10. Spaces without Proper Local Isometries.- 11. Proper Equilong Maps.- IV. Geodesics.- 12. Closed Hyperbolic Space Forms.- 13. Axes of Motions and Closed Geodesics.- 14. Plane Inverse Problems. Higher Dimensional Collineation Groups.- 15. One-Dimensional and Discrete Collineation Groups.- 16. Bonnet Angles. Quasi-Hyperbolic Geometry.- 17. Various Aspects of Conjugacy.- V. Motions.- 18. Finite and One-Parameter Groups of Motions.- 19. Transitivity on Pairs of Points and on Geodesies.- VI. Observations on Method and Content.- Literature.

最近チェックした商品