Calculus of Fractions and Homotopy Theory (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge)

個数:

Calculus of Fractions and Homotopy Theory (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 168 p.
  • 言語 ENG
  • 商品コード 9783642858468
  • DDC分類 514

Full Description

The main purpose of the present work is to present to the reader a particularly nice category for the study of homotopy, namely the homo­ topic category (IV). This category is, in fact, - according to Chapter VII and a well-known theorem of J. H. C. WHITEHEAD - equivalent to the category of CW-complexes modulo homotopy, i.e. the category whose objects are spaces of the homotopy type of a CW-complex and whose morphisms are homotopy classes of continuous mappings between such spaces. It is also equivalent (I, 1.3) to a category of fractions of the category of topological spaces modulo homotopy, and to the category of Kan complexes modulo homotopy (IV). In order to define our homotopic category, it appears useful to follow as closely as possible methods which have proved efficacious in homo­ logical algebra. Our category is thus the" topological" analogue of the derived category of an abelian category (VERDIER). The algebraic machinery upon which this work is essentially based includes the usual grounding in category theory - summarized in the Dictionary - and the theory of categories of fractions which forms the subject of the first chapter of the book. The merely topological machinery reduces to a few properties of Kelley spaces (Chapters I and III). The starting point of our study is the category ,10 Iff of simplicial sets (C.S.S. complexes or semi-simplicial sets in a former terminology).

Contents

Dictionary.- I. Categories of Fractions.- 1. Categories of Fractions. Categories of Fractions and Adjoint Functors.- 2. The Calculus of Fractions.- 3. Calculus of Left Fractions and Direct Limits.- 4. Return to Paragraph 1.- II. Simplicial Sets.- 1. Functor Categories.- 2. Definition of Simplicial Sets.- 3. Skeleton of a Simplicial Set.- 4. Simplicial Sets and Category of Categories.- 5. Ordered Sets and Simplicial Sets. Shuffles.- 6. Groupoids.- 7. Groupoids and Simplicial Sets.- III. Geometric Realization of Simplicial Sets.- 1. Geometric Realization of a Simplicial Set.- 4. Kelley Spaces.- 3. Exactness Properties of the Geometric Realization Functor.- 4. Geometric Realization of a Locally Trivial Morphism.- IV. The Homotopic Category.- 1. Homotopies.- 2. Anodyne Extensions.- 3. Kan Complexes.- 4. Pointed Complexes.- 5. Poincaré Group of a Pointed Complex.- V. Exact Sequences of Algebraic Topology.- 1. 2-Categories.- 2. Exact Sequences of Pointed Groupoids.- 3. Spaces of Loops.- 4. Exact Sequences: Statement of the Theorem and Invariance.- 5. Proof of Theorem 4.2.- 6. Duality.- 7. First Example: Pointed Topological Spaces.- 8. Second Example: Differential Complexes of an Abelian Category.- VI. Exact Sequences of the Homotopic Category.- 1. Spaces of Loops.- 2. Cones.- 3. Homotopy Groups.- 4. Generalities on Fibrations.- 5. Minimal Fibrations.- VII. Combinatorial Description of Topological Spaces.- 1. Geometric Realization of the Homotopic Category.- 2. Geometric Realization of the Pointed Homotopic Category.- 3. Proof of Milnor's Theorem.- Appendix I. Coverings.- 1. Coverings of a Groupoid.- 2. Coverings of Groupoids and Simplicial Coverings.- 3. Simplicial Coverings and Topological Coverings.- Appendix II. The Homology Groups of a Simplicial Set.- 2. The ReducedHomology Group of a Pointed Simplicial Set.- 3. The Spectral Sequence of Direct Limits.- 4. The Spectral Sequence of a Fibration.- Index of Notations.- Terminological Index.

最近チェックした商品