Cohomology Theories for Compact Abelian Groups (Reprint)

個数:

Cohomology Theories for Compact Abelian Groups (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9783642806728
  • DDC分類 511

Full Description

Of all topological algebraic structures compact topological groups have perhaps the richest theory since 80 many different fields contribute to their study: Analysis enters through the representation theory and harmonic analysis; differential geo­ metry, the theory of real analytic functions and the theory of differential equations come into the play via Lie group theory; point set topology is used in describing the local geometric structure of compact groups via limit spaces; global topology and the theory of manifolds again playa role through Lie group theory; and, of course, algebra enters through the cohomology and homology theory. A particularly well understood subclass of compact groups is the class of com­ pact abelian groups. An added element of elegance is the duality theory, which states that the category of compact abelian groups is completely equivalent to the category of (discrete) abelian groups with all arrows reversed. This allows for a virtually complete algebraisation of any question concerning compact abelian groups. The subclass of compact abelian groups is not so special within the category of compact. groups as it may seem at first glance. As is very well known, the local geometric structure of a compact group may be extremely complicated, but all local complication happens to be "abelian". Indeed, via the duality theory, the complication in compact connected groups is faithfully reflected in the theory of torsion free discrete abelian groups whose notorious complexity has resisted all efforts of complete classification in ranks greater than two.

Contents

I. Algebraic background.- Section 1. On exponential functors.- Section 2. The arithmetic of certain spectral algebras.- Section 3. Some analogues of the results about spectral algebras with dual derivations.- Section 4. The Bockstein formalism.- II. The cohomology of finite abelian groups.- Section 1. Products.- Section 2. Special free resolutions for finite abelian groups.- Section 3. About the cohomology of finite abelian groups in the case of trivial action.- Section 4. Appendix to Section 3: The low dimensions.- III. The cohomology of classifying spaces of compact groups.- Section 1. The functor h.- Section 2. The functor h for finite groups.- IV. Kan extensions of functors on dense categories.- Section 1. Dense categories and continuous functors.- Section 2. Multiplicative Hopf extensions.- V. The cohomological structure of compact abelian groups.- Section 1. The cohomologies of connected compact abelian groups.- Section 2. The space cohomology of arbitrary compact abelian groups.- Section 3. The canonical embedding of ? in hG.- Section 4. Cohomology theories for compact groups over fields as coefficient domains.- Section 5. The structure of h for arbitrary compact abelian groups and integral coefficients.- VI. Appendix. Another construction of the functor h.- Proposition 1. About the graph of < for a topological monoid acting on a space — Proposition 2. Properties of the Dold-Lashof spectrum.- List of notations.

最近チェックした商品