Introduction to Random Processes (Springer Series in Soviet Mathematics) (Reprint)

個数:

Introduction to Random Processes (Springer Series in Soviet Mathematics) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 125 p.
  • 言語 ENG
  • 商品コード 9783642727191
  • DDC分類 519

Full Description

Today, the theory of random processes represents a large field of mathematics with many different branches, and the task of choosing topics for a brief introduction to this theory is far from being simple. This introduction to the theory of random processes uses mathematical models that are simple, but have some importance for applications. We consider different processes, whose development in time depends on some random factors. The fundamental problem can be briefly circumscribed in the following way: given some relatively simple characteristics of a process, compute the probability of another event which may be very complicated; or estimate a random variable which is related to the behaviour of the process. The models that we consider are chosen in such a way that it is possible to discuss the different methods of the theory of random processes by referring to these models. The book starts with a treatment of homogeneous Markov processes with a countable number of states. The main topic is the ergodic theorem, the method of Kolmogorov's differential equations (Secs. 1-4) and the Brownian motion process, the connecting link being the transition from Kolmogorov's differential-difference equations for random walk to a limit diffusion equation (Sec. 5).

Contents

Section 1. Random Processes with Discrete State Space. Examples.- Section 2. Homogeneous Markov Processes with a Countable Number of States. Kolmogorov's Differential Equations.- Section 3. Homogeneous Markov Processes with a Countable Number of States. Convergence to a Stationary Distribution.- Section 4. Branching Processes. Method of Generating Functions.- Section 5. Brownian Motion. The Diffusion Equation and Some Properties of the Trajectories.- Section 6. Random Processes in Multi-Server Systems.- Section 7. Random Processes as Functions in Hilbert Space.- Section 8. Stochastic Measures and Integrals.- Section 9. The Stochastic Ito Integral and Stochastic Differentials.- Section 10. Stochastic Differential Equations.- Section 11. Diffusion Processes. Kolomogorov's Differential Equations.- Section 12. Linear Stochastic Differential Equations and Linear Random Processes.- Section 13. Stationary Processes. Spectral Analysis and Linear Transformations.- Section 14. Some Problems of Optimal Estimation.- Section 15. A Filtration Problem. Kalman-Bucy Filter.- Appendix. Basic Concepts of Probability Theory.

最近チェックした商品