Neurocomputation in Remote Sensing Data Analysis : Proceedings of Concerted Action COMPARES (Connectionist Methods for Pre-Processing and Analysis of Remote Sensing Data)

個数:

Neurocomputation in Remote Sensing Data Analysis : Proceedings of Concerted Action COMPARES (Connectionist Methods for Pre-Processing and Analysis of Remote Sensing Data)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 284 p.
  • 言語 ENG
  • 商品コード 9783642638282
  • DDC分類 006.4

Full Description

Since 1994 the European Commission has been supporting activities under the Environment and Climate programme of research and technological de­ velopment, with the aim of developing cost-effective applications of satellite Earth observation (EO) for both environmental monitoring and research. This action has included support to methodological research, aimed at the development and evaluation of new techniques forming part ofthe chain of processing needed to transform data into useful information. Wherever appropriate, the Commission has emphasised the coordination of ongoing research funded at the national level, through the mechanism of concerted actions. Concerted actions are flexible and efficient means to marshal efforts at the European level for a certain period. They are proposed by groups of researchers active in a given field who have identified the added value to be gained by European cooperation, whilst continuing to pursue their own individual projects. In view of the rapid developments in the field of neural network over the last 10 years, together with the growing interest ofthe Earth observation community in this approach as a tool for data interpretation, the Commission decided in 1995 to support the concerted action COMPARES, following a proposal from a group of acknowledged European experts.

Contents

Open Questions in Neurocomputing for Earth Observation.- A Comparison of the Characterisation of Agricultural Land Using Singular Value Decomposition and Neural Networks.- Land Cover Mapping from Remotely Sensed Data with a Neural Network: Accommodating Fuzziness.- Geological Mapping Using Multi-Sensor Data: A Comparison of Methods.- Application of Neural Networks and Order Statistics Filters to Speckle Noise Reduction in Remote Sensing Imaging.- Neural Nets and Multichannel Image Processing Applications.- Neural Networks for Classification of Ice Type Concentration from ERS-1 SAR Images. Classical Methods versus Neural Networks.- A Neural Network Approach to Spectral Mixture Analysis.- Comparison Between Systems of Image Interpretation.- Feature Extraction for Neural Network Classifiers.- Spectral Pattern Recognition by a Two-Layer Perceptron: Effects of Training Set Size.- Comparison and Combination of Statistical and Neural Network Algorithms for Remote-Sensing Image Classification.- Integrating the Alisa Classifier with Knowledge-Based Methods for Cadastral-Map Interpretation.- A Hybrid Method for Preprocessing and Classification of SPOT Images.- Testing some Connectionist Approaches for Thematic Mapping of Rural Areas.- Using Artificial Recurrent Neural Nets to Identify Spectral and Spatial Patterns for Satellite Imagery Classification of Urban Areas.- Dynamic Segmentation of Satellite Images Using Pulsed Coupled Neural Networks.- Non-Linear Diffusion as a Neuron-Like Paradigm for Low-Level Vision.- Application of the Constructive Mikado-Algorithm on Remotely Sensed Data.- A Simple Neural Network Contextual Classifier.- Optimising Neural Networks for Land Use Classification.- High Speed Image Segmentation Using a Binary Neural Network.- Efficient Processing and Analysis of Images Using Neural Networks.- Selection of the Number of Clusters in Remote Sensing Images by Means of Neural Networks.- A Comparative Study of Topological Feature Maps Versus Conventional Clustering for (Multi-Spectral) Scene Identification in METEOSAT Imagery.- Seif Organised Maps: the Combined Utilisation of Feature and Novelty Detectors.- Generalisation of Neural Network Based Segmentation Results for Classification Purposes.- Remote Sensing Applications Which may be Addressed by Neural Networks Using Parallel Processing Technology.- General Discussion.

最近チェックした商品