Approaches to Probabilistic Model Learning for Mobile Manipulation Robots (Springer Tracts in Advanced Robotics) (2013)

個数:

Approaches to Probabilistic Model Learning for Mobile Manipulation Robots (Springer Tracts in Advanced Robotics) (2013)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 204 p.
  • 商品コード 9783642437144

Full Description

Mobile manipulation robots are envisioned to provide many useful services both in domestic environments as well as in the industrial context.

Examples include domestic service robots that implement large parts of the housework, and versatile industrial assistants that provide automation, transportation, inspection, and monitoring services. The challenge in these applications is that the robots have to function under changing, real-world conditions, be able to deal with considerable amounts of noise and uncertainty, and operate without the supervision of an expert.

This book presents novel learning techniques that enable mobile manipulation robots, i.e., mobile platforms with one or more robotic manipulators, to autonomously adapt to new or changing situations. The approaches presented in this book cover the following topics: (1) learning the robot's kinematic structure and properties using actuation and visual feedback, (2) learning about articulated objects in the environment in which the robot is operating, (3) using tactile feedback to augment the visual perception, and (4) learning novel manipulation tasks from human demonstrations.

This book is an ideal resource for postgraduates and researchers working in robotics, computer vision, and artificial intelligence who want to get an overview on one of the following subjects:

·         kinematic modeling and learning,

·         self-calibration and life-long adaptation,

·         tactile sensing and tactile object recognition, and

·         imitation learning and programming by demonstration.

Contents

Introduction.- Basics.- Body Schema Learning.- Learning Kinematic Models of Articulated Objects.- Vision-based Perception of Articulated Objects.- Object Recognition using Tactile Sensors.- Object State Estimation using Tactile Sensors.- Learning Manipulation Tasks by Demonstration.- Conclusions.

最近チェックした商品