Journeys to Data Mining : Experiences from 15 Renowned Researchers (2012)

個数:

Journeys to Data Mining : Experiences from 15 Renowned Researchers (2012)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 244 p.
  • 商品コード 9783642428807

Full Description

Data mining, an interdisciplinary field combining methods from artificial intelligence, machine learning, statistics and database systems, has grown tremendously over the last 20 years and produced core results for applications like business intelligence, spatio-temporal data analysis, bioinformatics, and stream data processing.

The fifteen contributors to this volume are successful and well-known data mining scientists and professionals. Although by no means an exhaustive list, all of them have helped the field to gain the reputation and importance it enjoys today, through the many valuable contributions they have made. Mohamed Medhat Gaber has asked them (and many others) to write down their journeys through the data mining field, trying to answer the following questions:

1. What are your motives for conducting research in the data mining field?
2. Describe the milestones of your research in this field.
3. What are your notable success stories?
4. How did you learn from your failures?
5. Have you encountered unexpected results?
6. What are the current research issues and challenges in your area?
7. Describe your research tools and techniques.
8. How would you advise a young researcher to make an impact?
9. What do you predict for the next two years in your area?
10. What are your expectations in the long term?

In order to maintain the informal character of their contributions, they were given complete freedom as to how to organize their answers. This narrative presentation style provides PhD students and novices who are eager to find their way to successful research in data mining with valuable insights into career planning. In addition, everyone else interested in the history of computer science may be surprised about the stunning successes and possible failures computer science careers (still) have to offer.

Contents

Introduction.- Dean Abbott.- Charu Aggarwal.- Michael Berthold.- John Elder.- Chris Clifton.- David Hand.- Cheryl Howard.- Hillol Kargupta.- Dustin Hux.- Colleen McCue.- Geoff McLachlan.- Gregory Piatetsky-Shapiro.- Shusaku Tsumoto.- Graham Williams.- Mohammed J. Zaki.

最近チェックした商品