An den Grenzen des Endlichen : Das Hilbertprogramm im Kontext von Formalismus und Finitismus (Mathematik im Kontext) (2013. xiii, 376 S. XIII, 376 S. 1 Abb. 240 mm)

個数:

An den Grenzen des Endlichen : Das Hilbertprogramm im Kontext von Formalismus und Finitismus (Mathematik im Kontext) (2013. xiii, 376 S. XIII, 376 S. 1 Abb. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 376 p.
  • 商品コード 9783642296536

Full Description

​David Hilbert entwickelte mit seiner Beweistheorie ein Programm zur Grundlegung der Mathematik. Setzt er dazu eine formalistische Philosophie der Mathematik voraus? Die überraschende Antwort des ersten Teils dieses Buches ist ein differenziertes Nein. Hilberts Position schließt logizistische und intuitionistische Momente ein - und sicher keinen Spielformalismus. Der zweite Teil des Buches macht die Fülle der Ideen sichtbar, die Hilbert und seine Schüler im Rahmen der formallogischen Durchführung und Weiterentwicklung des Programms entwickelt haben, um die Widerspruchsfreiheit mathematischer Axiomensysteme mit mathematischen Mitteln zu zeigen. Der dritte Teil widmet sich recht anspruchsvollen philosophischen „Überhangfragen": Ist das Programm nicht letztlich zirkulär? Ist es nicht mit den Gödelsätzen zum Scheitern verurteilt? Und wie können in einem finitistischen Rahmen transfinite Ordinalzahlen auftreten? Hilbert hat der Philosophie ein spannendes und herausforderndes Aufgabenfeld hinterlassen.​

Contents

Erster Teil: Zur Konzeption des Hilbertprogramms. Das Hilbertprogramm und seine Ziele.- Wurzeln: Axiomatik.- Kontext: Logizismus und Intutitionismus.- Fromalismus.- Finitsmus.- Die Methode der idealen Elemente.- Instrumentalismus.- Zweiter Teil: Zur Durchführung des Hilbertprogramms. Hilberts Widerspruchsfreiheitsbeweise.- Hilbertschule I: Wilhelm Ackermann.- Intuitionistische und Klassische Zahlentheorie: HA und PA.- Hilbertschule II: Gerhard Gentzen.- Dritter Teil: Zur Reflexion des Hilbertprogramms. Der Problemkreis „Poincaré".- Der Problemkreis „Gödel".- Der Problemkreis „Kreisel".- Resümee.

最近チェックした商品