Mining of Data with Complex Structures (Studies in Computational Intelligence) (2010)

個数:

Mining of Data with Complex Structures (Studies in Computational Intelligence) (2010)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 328 p.
  • 言語 ENG
  • 商品コード 9783642267031
  • DDC分類 006.312

Full Description

Mining of Data with Complex Structures:

- Clarifies the type and nature of data with complex structure including sequences, trees and graphs

- Provides a detailed background of the state-of-the-art of sequence mining, tree mining and graph mining.

- Defines the essential aspects of the tree mining problem: subtree types, support definitions, constraints.

- Outlines the implementation issues one needs to consider when developing tree mining algorithms (enumeration strategies, data structures, etc.)

- Details the Tree Model Guided (TMG) approach for tree mining and provides the mathematical model for the worst case estimate of complexity of mining ordered induced and embedded subtrees.

-  Explains the mechanism of the TMG framework for mining ordered/unordered induced/embedded and distance-constrained embedded subtrees.

-  Provides a detailed comparison of the different tree mining approaches highlighting the characteristics and benefits of each approach.

-  Overviews the implications and potential applications of tree mining in general knowledge management related tasks, and uses Web, health and bioinformatics related applications as case studies.

-  Details the extension of the TMG framework for sequence mining

- Provides an overview of the future research direction with respect to technical extensions and application areas

The primary audience is 3rd year, 4th year undergraduate students, Masters and PhD students and academics. The book can be used for both teaching and research. The secondary audiences are practitioners in industry, business, commerce, government and consortiums, alliances and partnerships to learn how to introduce and efficiently make use of the techniques for mining of data with complex structures into their applications. The scope of the book is both theoretical and practical and as such it will reach a broad market both within academia and industry.In addition, its subject matter is a rapidly emerging field that is critical for efficient analysis of knowledge stored in various domains.

Contents

Tree Mining Problem.- Algorithm Development Issues.- Tree Model Guided Framework.- TMG Framework for Mining Ordered Subtrees.- TMG Framework for Mining Unordered Subtrees.- Mining Distance-Constrained Embedded Subtrees.- Mining Maximal and Closed Frequent Subtrees.- Tree Mining Applications.- Extension of TMG Framework for Mining Frequent Subsequences.- Graph Mining.- New Research Directions.

最近チェックした商品