Anschauliche Geometrie : Mit e. Appendix 'Einfachste Grundbegriffe der Topologie' v. Paul Alexandroff (2. Aufl. 2011. XX, 310, 48 S. m. 330 Abb. 23,5 cm)

個数:

Anschauliche Geometrie : Mit e. Appendix 'Einfachste Grundbegriffe der Topologie' v. Paul Alexandroff (2. Aufl. 2011. XX, 310, 48 S. m. 330 Abb. 23,5 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783642199479

Full Description

Anschauliche Geometrie - wohl selten ist ein Mathematikbuch seinem Titel so gerecht geworden wie dieses außergewöhnliche Werk von Hilbert und Cohn-Vossen. Zuerst 1932 erschienen, hat das Buch nichts von seiner Frische und Kraft verloren. Hilbert hat sein erklärtes Ziel, die Faszination der Geometrie zu vermitteln, bei Generationen von Mathematikern erreicht.

Aus Hilberts Vorwort: "Das Buch soll dazu dienen, die Freude an der Mathematik zu mehren, indem es dem Leser erleichtert, in das Wesen der Mathematik einzudringen, ohne sich einem beschwerlichen Studium zu unterziehen".

Contents

Erstes Kapitel. Die einfachsten Kurven und Flächen.- § 1. Ebene Kurven.- § 2. Zylinder, Kegel, Kegelschnitte und deren Rotationsflächen.- § 3. Die Flächen zweiter Ordnung.- § 4. Fadenkonstruktion des Ellipsoids und konfokale Flächen zweiter Ordnung.- Zweites Kapitel. Reguläre Punktsysteme.- § 5. Ebene Punktgitter.- § 6. Ebene Punktgitter in der Zahlentheorie.- § 7. Punktgitter in drei und mehr Dimensionen.- § B. Krystalle als regelmäßige Punktsysteme.- § 9. Reguläre Punktsysteme und diskontinuierliche Bewegungsgruppen.- § 10. Ebene Bewegungen und ihre Zusammensetzung; Einteilung der ebenen diskontinuierlichen Bewegungsgruppen.- § 11. Die diskontinuierlichen ebenen Bewegungsgruppen mit unendlichem Fundamentalbereich.- § 12. Die krystallographischen Bewegungsgruppen der Ebene. Reguläre Punkt- und Zeigersysteme. Aufbau der Ebene aus kongruenten Bereichen.- § 13. Die krystallographischen Klassen und Gruppen räumlicher Bewegungen. Gruppen und Punktsysteme mit spiegelbildlicher Symmetrie.- § 14. Die regulären Polyeder.- Drittes Kapitel. Konfigurationen.- § 15. Vorbemerkungen über ebene Konfigurationen.- § 16. Die Konfigurationen (73) und (83).- § 17. Die Konfigurationen (93).- § 18. Perspektive, unendlich ferne Elemente und ebenes Dualitätsprinzip.- § 19. Unendlich ferne Elemente und Dualitätsprinzip im Raum. Desarguesscher Satz und Desarguessche Konfiguration (103).- § 20. Gegenüberstellung des Pascalschen und des Desarguesschen Satzes.- § 21. Vorbemerkungen über räumliche Konfigurationen.- § 22. Die Reyesche Konfiguration.- § 23. Reguläre Körper und Zelle und ihre Projektionen.- § 24. Abzählende Methoden der Geometrie.- § 25. Die Schläflische Doppelsechs.- Viertes Kapitel. Differentialgeometrie.- § 26. Ebene Kurven.- § 27.Raumkurven.- § 28. Die Krümmung auf Flächen. Elliptischer, hyperbolischer und parabolischer Fall. Krümmungslinien und Asymptotenlinien, Nabelpunkte, Minimalflächen, Affensättel.- § 29. Sphärische Abbildung und Gausssche Krümmung.- § 30. Abwickelbare Flächen, Regelflächen.- § 31. Verwindung von Raumkurven.- § 32. Elf Eigenschaften der Kugel.- § 33. Verbiegungen von Flächen in sich.- § 34. Elliptische Geometrie.- § 35. Hyperbolische Geometrie; ihr Verhältnis zur euklidischen und elliptischen Geometrie.- § 36. Stereographische Projektion und Kreisverwandtschaften. Poincarésches Modell der hyperbolischen Ebene.- § 37. Methoden der Abbildung. Längentreue, inhaltstreue, geodätische, stetige und konforme Abbildung.- § 38. Geometrische Funktionentheorie, Riemannscher Abbildungssatz, konforme Abbildung im Raum.- § 39. Konforme Abbildung krummer Flächen. Minimalflächen Plateausches Problem.- Fünftes Kapitel. Kinematik.- § 40. Gelenkmechanismen.- § 41. Bewegung ebener Figuren.- § 42. Ein Apparat zur Konstruktion der Ellipse und ihrer Rollkurven.- § 43. Bewegungen im Raum.- Sechstes Kapitel. Topologie.- § 44. Polyeder.- § 45. Flächen.- § 46. Einseitige Flächen.- § 47. Die projektive Ebene als geschlossene Fläche.- § 48. Normaltypen der Flächen endlichen Zusammenhangs.- § 49. Topologische Abbildung einer Fläche auf sich. Fixpunkte. Abbildungsklassen. Universelle Überlagerungsfläche des Torus.- § 50. Konforme Abbildung des Torus.- § 51. Das Problem der Nachbargebiete, das Fadenproblem und das Farbenproblem.

最近チェックした商品