Algebraic Aspects of Cryptography

個数:

Algebraic Aspects of Cryptography

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 216 p.
  • 言語 ENG
  • 商品コード 9783642083327
  • DDC分類 005

Full Description

This book is intended as a text for a course on cryptography with emphasis on algebraic methods. It is written so as to be accessible to graduate or advanced undergraduate students, as well as to scientists in other fields. The first three chapters form a self-contained introduction to basic concepts and techniques. Here my approach is intuitive and informal. For example, the treatment of computational complexity in Chapter 2, while lacking formalistic rigor, emphasizes the aspects of the subject that are most important in cryptography. Chapters 4-6 and the Appendix contain material that for the most part has not previously appeared in textbook form. A novel feature is the inclusion of three types of cryptography - "hidden monomial" systems, combinatorial-algebraic sys­ tems, and hyperelliptic systems - that are at an early stage of development. It is too soon to know which, if any, of these cryptosystems will ultimately be of practical use. But in the rapidly growing field of cryptography it is worthwhile to continually explore new one-way constructions coming from different areas of mathematics. Perhaps some of the readers will contribute to the research that still needs to be done. This book is designed not as a comprehensive reference work, but rather as a selective textbook. The many exercises (with answers at the back of the book) make it suitable for use in a math or computer science course or in a program of independent study.

Contents

1. Cryptography.- §1. Early History.- §2. The Idea of Public Key Cryptography.- §3. The RSA Cryptosystem.- §4. Diffie-Hellman and the Digital Signature Algorithm.- §5. Secret Sharing, Coin Flipping, and Time Spent on Homework.- §6. Passwords, Signatures, and Ciphers.- §7. Practical Cryptosystems and Useful Impractical Ones.- 2. Complexity of Computations.- §1. The Big-O Notation.- §2. Length of Numbers.- §3. Time Estimates.- §4. P, NP, and NP-Completeness.- §5. Promise Problems.- §6. Randomized Algorithms and Complexity Classes.- §7. Some Other Complexity Classes.- 3. Algebra.- §1. Fields.- §2. Finite Fields.- §3. The Euclidean Algorithm for Polynomials.- §4. Polynomial Rings.- §5. Gröbner Bases.- 4. Hidden Monomial Cryptosystems.- § 1. The Imai-Matsumoto System.- §2. Patarin's Little Dragon.- §3. Systems That Might Be More Secure.- 5. Combinatorial-Algebraic Cryptosystems.- §1. History.- §2. Irrelevance of Brassard's Theorem.- §3. Concrete Combinatorial-Algebraic Systems.- §4. The Basic Computational Algebra Problem.- §5. Cryptographic Version of Ideal Membership.- §6. Linear Algebra Attacks.- §7. Designing a Secure System.- 6. Elliptic and Hyperelliptic Cryptosystems.- § 1. Elliptic Curves.- §2. Elliptic Curve Cryptosystems.- §3. Elliptic Curve Analogues of Classical Number Theory Problems.- §4. Cultural Background: Conjectures on Elliptic Curves and Surprising Relations with Other Problems.- §5. Hyperelliptic Curves.- §6. Hyperelliptic Cryptosystems.- §1. Basic Definitions and Properties.- §2. Polynomial and Rational Functions.- §3. Zeros and Poles.- §4. Divisors.- §5. Representing Semi-Reduced Divisors.- §6. Reduced Divisors.- §7. Adding Reduced Divisors.- Exercises.- Answers to Exercises. 

最近チェックした商品