Cyclic Homology in Non-Commutative Geometry (Encyclopaedia of Mathematical Sciences)

個数:

Cyclic Homology in Non-Commutative Geometry (Encyclopaedia of Mathematical Sciences)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 150 p.
  • 言語 ENG
  • 商品コード 9783642073373
  • DDC分類 515

Full Description

Cyclic homology was introduced in the early eighties independently by Connes and Tsygan. They came from different directions. Connes wanted to associate homological invariants to K-homology classes and to describe the index pair­ ing with K-theory in that way, while Tsygan was motivated by algebraic K-theory and Lie algebra cohomology. At the same time Karoubi had done work on characteristic classes that led him to study related structures, without however arriving at cyclic homology properly speaking. Many of the principal properties of cyclic homology were already developed in the fundamental article of Connes and in the long paper by Feigin-Tsygan. In the sequel, cyclic homology was recognized quickly by many specialists as a new intriguing structure in homological algebra, with unusual features. In a first phase it was tried to treat this structure as well as possible within the traditional framework of homological algebra. The cyclic homology groups were computed in many examples and new important properties such as prod­ uct structures, excision for H-unital ideals, or connections with cyclic objects and simplicial topology, were established. An excellent account of the state of the theory after that phase is given in the book of Loday.

Contents

I. Cyclic Theory, Bivariant K-Theory and the Bivariant Chern-Connes Character by J. Cuntz: 1. Cyclic Theory; 2. Cyclic Theory for Locally Convex Algebras; 3. Bivariant K-Theory; 4. Infinite-Dimensional Cyclic Theories; A. Locally Convex Algebras; B. Standard Extensions.- II. Noncommutative Geometry, the Transverse Signature Operator, and Hopf Algebras (after A. Connes and H. Moscovici) by G. Skandalis: 1. Preliminaries; 2. The Local Index Formula; 3. The Diff-Invariant Signature Operator; 4. The 'Transverse' Hopf Algebra.- III. Cyclic Homology by B. Tsygan: 1. Introduction; 2. Hochschild and Cyclic Homology of Algebras; 3. The Cyclic Complex C^{lambda}_{bullet}; 4. Non-Commutative Differential Calculus; 5. Cyclic Objects; 6. Examples; 7. Index Theorems; 8. Riemann-Roch Theorem for D-Modules.

最近チェックした商品