Bio-Inspired Credit Risk Analysis : Computational Intelligence with Support Vector Machines (2008. XVI, 244 S. 26 SW-Abb., 35 Tabellen, 26 SW-Zeichn. 235 mm)

個数:

Bio-Inspired Credit Risk Analysis : Computational Intelligence with Support Vector Machines (2008. XVI, 244 S. 26 SW-Abb., 35 Tabellen, 26 SW-Zeichn. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 241 p.
  • 言語 ENG
  • 商品コード 9783540778028

Full Description

Credit risk analysis is one of the most important topics in the field of financial risk management. Due to recent financial crises and regulatory concern of Basel II, credit risk analysis has been the major focus of financial and banking industry. Especially for some credit-granting institutions such as commercial banks and credit companies, the ability to discriminate good customers from bad ones is crucial. The need for reliable quantitative models that predict defaults accurately is imperative so that the interested parties can take either preventive or corrective action. Hence credit risk analysis becomes very important for sustainability and profit of enterprises. In such backgrounds, this book tries to integrate recent emerging support vector machines and other computational intelligence techniques that replicate the principles of bio-inspired information processing to create some innovative methodologies for credit risk analysis and to provide decision support information for interested parties.

Contents

Credit Risk Analysis with Computational Intelligence: An Analytical Survey.- Credit Risk Analysis with Computational Intelligence: A Review.- Unitary SVM Models with Optimal Parameter Selection for Credit Risk Evaluation.- Credit Risk Assessment Using a Nearest-Point-Algorithm-based SVM with Design of Experiment for Parameter Selection.- Credit Risk Evaluation Using SVM with Direct Search for Parameter Selection.- Hybridizing SVM and Other Computational Intelligent Techniques for Credit Risk Analysis.- Hybridizing Rough Sets and SVM for Credit Risk Evaluation.- A Least Squares Fuzzy SVM Approach to Credit Risk Assessment.- Evaluating Credit Risk with a Bilateral-Weighted Fuzzy SVM Model.- Evolving Least Squares SVM for Credit Risk Analysis.- SVM Ensemble Learning for Credit Risk Analysis.- Credit Risk Evaluation Using a Multistage SVM Ensemble Learning Approach.- Credit Risk Analysis with a SVM-based Metamodeling Ensemble Approach.- An Evolutionary-Programming-Based Knowledge Ensemble Model for Business Credit Risk Analysis.- An Intelligent-Agent-Based Multicriteria Fuzzy Group Decision Making Model for Credit Risk Analysis.

最近チェックした商品